Search Results

You are looking at 1 - 10 of 19 items for :

  • Author or Editor: Zhe-Min Tan x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Xin Qiu and Zhe-Min Tan

Abstract

This study analyzes the secondary eyewall formation (SEF) process in an idealized cloud-resolving simulation of a tropical cyclone. In particular, the unbalanced boundary layer response to asymmetric inflow forcing induced by outer rainbands (ORBs) is examined in order to understand the mechanisms driving the sustained convection outside the primary eyewall during the early phase of SEF.

The enhancement of convection in the SEF region follows the formation and inward contraction of an ORB. The azimuthal distribution of the enhanced convection is highly asymmetric but regular, generally along a half circle starting from the downwind portion of the ORB. It turns out that the descending radial inflow in the middle and downwind portions of the ORB initiates/maintains a strong inflow in the boundary layer. The latter is able to penetrate into the inner-core region, sharpens the gradient of radial velocity, and reinforces convergence. Consequently, warm and moist air is continuously lifted up at the leading edge of the strong inflow to support deep convection. Moreover, the inflow from the ORB creates strong supergradient winds that are ejected outward downwind, thereby enhancing convergence and convection on the other side of the storm. The results provide new insight into the key processes responsible for convection enhancement during the early phase of SEF in three dimensions and suggest the limitations of axisymmetric studies. There are also implications regarding the impact of the asymmetric boundary layer flow under a translating storm on SEF.

Full access
Bolei Yang and Zhe-Min Tan

Abstract

Self-aggregation of convection can be considered as the simultaneous occurrence of dry patch initiation/amplification and wet patch contraction/intensification from initially uniform moisture and temperature fields. As the twin of wet patches, dry patches play an important role in moisture and energy balance during convective self-aggregation. In this study, the WRF Model is used to study the initiation of dry patches in convective self-aggregation, especially the continuous drying in their boundary layer (BL). In the dry patch BL, increased air density leads to an enhanced high pressure anomaly, which drives an amplifying BL divergent flow and induces an amplifying BL subsidence. The virtual effect of drying by subsidence counteracts warming by subsidence and the BL process, further increasing BL air density. Our analysis indicates the existence of a dry-subsidence feedback, which leads to the initiation of dry patches in convective self-aggregation. This feedback is shown to be important even in very large-scale (3000 km × 9000 km) cloud-resolving convective self-aggregation simulations.

Free access
Bolei Yang and Zhe-Min Tan

Abstract

Interactive radiation helps accelerate tropical cyclogenesis, but the mechanism is still unclear. Using idealized numerical modeling in the radiative–convective equilibrium framework, it is revealed that interactive radiation can bring forward tropical cyclogenesis by accelerating the development of the midlevel vortex. A strong horizontal longwave radiative warming anomaly in the layer between 6 and 11 km altitudes in the vortex region, caused by large concentration of ice-phased particles at high levels, is critical to the development of the midlevel vortex. This longwave radiative warming anomaly induces more upward water vapor flux (mainly in the nonconvective region) and then results in more latent heating at upper levels and more sublimation and melting cooling at lower levels. This leads to an increase of the vertical diabatic heating gradient, and then the intensification of the midlevel vortex. A stronger upward water vapor flux also produces more condensates at upper levels and further enhances the horizontal longwave radiative warming anomaly in the upper troposphere, constituting a positive feedback, and then accelerates tropical cyclogenesis.

Free access
Yi-Fan Wang and Zhe-Min Tan

Abstract

Secondary eyewall formation (SEF) could be considered as the aggregation of a convective-ring coupling with a tangential wind maximum outside the primary eyewall of a tropical cyclone (TC). The dynamics of SEF are investigated using idealized simulations based on a set of triplet experiments, whose differences are only in the initial outer-core wind speed. The triplet experiments indicate that the unbalanced boundary layer (BL) process driven by outer rainbands (ORBs) is essential for the canonical SEF. The developments of a secondary tangential wind maximum and a secondary convective ring are governed by two different pathways, which are well coupled in the canonical SEF. Compared with inner/suppressed rainbands, the downwind stratiform sectors of ORBs drive significant stronger BL convergence at its radially inward side, which fastens up the SEF region and links the two pathways. In the wind-maximum formation pathway, the positive feedback among the BL convergence, supergradient force, and relative vorticity within the BL dominates the spinup of a secondary tangential wind maximum. In the convective-ring formation pathway, the BL convergence contributes to the ascending motion through the frictional-forced updraft and accelerated outflow associated with the supergradient force above the BL. Driven only by inner rainbands, the simulated vortex develops a fake SEF with only the secondary convective ring since the rainband-driven BL convergence is less enhanced and thus fails to maintain the BL positive feedback in the wind-maximum pathway. Therefore, only ORBs can promote the canonical SEF. It also infers that any environmental/physical conditions favorable for the development of ORBs will ultimately contribute to SEF.

Open access
Jing Xu, Yuqing Wang, and Zhe-Min Tan

Abstract

An empirical relationship between sea surface temperature (SST) and the maximum potential intensification rate (MPIR) of tropical cyclones (TCs) over the North Atlantic has been developed based on the best-track TC data and the observed SST during 1988–2014. Similar to the empirical relationship between SST and the maximum potential intensity of TCs previously documented, results from this study show a nonlinear increasing trend of the MPIR with increasing SST, with a more rapid increasing trend when SST is higher than 27°C. Further analyses indicate that about 28% of intensifying TCs over the North Atlantic reached 50% of their MPIR and only 7% reached 80% of their MPIR at the time when they were at their lifetime maximum intensification rates. Moreover, a TC tended to have a larger intensification rate when it was located in regions with higher SST and lower vertical wind shear (VWS). This indicates that although the MPIR–SST relationship is much stronger than that for the IR rate versus SST for most TCs, the actual intensification rate of a TC is determined by not only the SST but also other environmental effects, such as VWS. Additional results from a simplified dynamical system previously developed for TC intensity prediction suggest an SST-dependent TC MPIR, similar to that fitted from observations. However, the MPIR obtained from the observational fitting seems to underestimate the MPIR in regions with low SST at higher latitudes where VWS is often large. Nevertheless, this study provides the observational evidence for the existence of the MPIR for TCs.

Full access
Yan Liu, Zhe-Min Tan, and Zhaohua Wu

Abstract

The interaction between tropical convective heating and thermally forced circulation is investigated using a global dry primitive-equation model with the parameterization of wave-conditional instability of the second kind (CISK). It is demonstrated that deep convective heating can hardly sustain itself through the moisture convergence at low levels regardless of the fraction of immediate consumption of converged moisture. In contrast, when the fraction is large, shallow convective heating and its forced circulation exhibit preferred growth of small scales. As the “CISK catastrophe” mainly comes from the instantaneous characters of moisture–convection feedback in the conventional wave-CISK, a noninstantaneous wave-CISK is proposed, which highlights the accumulation–consumption (AC) time scale for the convective heating accumulation and/or the converged moisture consumption. In the new wave-CISK, once moisture is converged, the release of latent heat takes place gradually within an AC time scale. In this sense, convective heating is not only related to the instantaneous moisture convergence at the current time, but also to that which occurred in the past period of the AC time scale. The noninstantaneous wave-CISK could guarantee the occurrence of convective heating and/or moisture convergence at larger scales, and then favor the growth of long waves, and thus solve the problem of CISK catastrophe. With the new wave-CISK and AC time scale of 2 days, the simulated convective heating-driven system bears a large similarity to that of the observed convectively coupled Kelvin wave.

Open access
Yi-Fan Wang and Zhe-Min Tan

Abstract

This study investigated the effects of vertical wind shear (VWS) with varying magnitudes on secondary eyewall formation (SEF). It turns out that weak-to-moderate VWS advances the timing of SEF. Strong VWS, however, is unfavorable for SEF in our idealized simulations.

VWS affecting SEF mainly lies on its influence on the outer rainbands (ORBs). Under weak-to-moderate VWS, ORBs develop more quickly in the downshear side and have distinct stratiform features in the upshear-left quadrant. The asymmetric inflow associated with the stratiform cooling descends into the boundary layer, reinforcing radial convergence at the radially inward side of ORBs. The radial convergence enhances the low-level convection, resulting in strengthened boundary layer inflow and accelerated low-level tangential wind jet. A budget analysis reveals that tangential advection extends a tangential wind jet further downwind, forming supergradient winds above the boundary layer in the upshear-right quadrant. As the ORBs propagate into the upshear-right quadrant, the pre-existing supergradient winds enhances the low-level convection, facilitating the closing of the secondary convective ring. The evolution in the upshear side exhibit quadrant-dependent interactions between ORBs and boundary layer. Following that, azimuthal-mean tangential wind acceleration becomes visible, forming the secondary tangential wind maximum.

Under strong VWS, the storm is weakened and the boundary layer in the upshear-left quadrant is invaded by low-entropy air, resulting in decreased conditional instability and low-level thermal buoyancy. The decreased stratiform precipitation due to weakened convective activity in the upshear-left quadrant prevents the upshear propagation of ORBs and thus is unfavorable for SEF.

Restricted access
Lin Yao, Da Yang, and Zhe-Min Tan

Abstract

Convective self-aggregation refers to a phenomenon in which random convection can self-organize into large-scale clusters over an ocean surface with uniform temperature in cloud-resolving models. Previous literature studies convective aggregation primarily by analyzing vertically integrated (VI) moist static energy (MSE) variance. That is the global MSE variance, including both the local MSE variance at a given altitude and the covariance of MSE anomalies between different altitudes. Here we present a vertically resolved (VR) MSE framework that focuses on the local MSE variance to study convective self-aggregation. Using a cloud-resolving simulation, we show that the development of self-aggregation is associated with an increase of local MSE variance, and that the diabatic and adiabatic generation of the MSE variance is mainly dominated by the boundary layer (BL; the lowest 2 km). The results agree with recent numerical simulation results and the available potential energy analyses showing that the BL plays a key role in the development of self-aggregation. Additionally, we find that the lower free troposphere (2–4 km) also generates significant MSE variance in the first 15 days. We further present a detailed comparison between the global and local MSE variance frameworks in their mathematical formulation and diagnostic results, highlighting their differences.

Restricted access
Yuqing Wang, Jing Xu, and Zhe-Min Tan

Abstract

Previous studies have demonstrated the contribution of dissipative heating (DH) to the maximum potential intensity (MPI) of tropical cyclones (TCs). Since DH is a function of near-surface wind speed and thus TC intensity, a natural question arises as to whether DH contributes to the intensity dependence of TC potential intensification rate (PIR). To address this issue, an attempt has been made to include DH in a recently developed time-dependent theory of TC intensification. With this addition, the theory predicts a shift of the maximum PIR toward the higher intensity side, which is consistent with the intensity dependence of TC intensification rate in observed strong TCs. Since the theory without DH predicts a dependence of TC PIR on the square of the MPI, the inclusion of DH results in an even higher PIR for strong TCs. Considering the projected increase in TC MPI under global warming, the theoretical work implies that as the climate continues to warm, TCs may intensify more rapidly. This may not only make the TC intensity forecasting more difficult, but also may increase the threats of TCs to the coastal populations if TCs intensify more rapidly just before they make landfall.

Significance Statement

Previous studies have demonstrated that dissipative heating (DH) can significantly contribute to the maximum potential intensity (MPI) that a tropical cyclone (TC) can achieve given favorable environmental thermodynamic conditions of the atmosphere and the underlying ocean. Here we show that because DH is a function of near-surface wind speed and thus TC intensity, DH can also significantly contribute to the intensity dependence of TC potential intensification rate (PIR). This has been demonstrated by introducing DH into a recently developed time-dependent theory of TC intensification. With DH the theory predicts a shift of the maximum PIR toward the higher intensity side as observed in strong TCs. Therefore, as the climate continues to warm, TCs may intensify more rapidly and become stronger.

Restricted access
Zhe-Min Tan, Fuqing Zhang, Richard Rotunno, and Chris Snyder

Abstract

Recent papers by the authors demonstrated the possible influence of initial errors of small amplitude and scale on the numerical prediction of the “surprise” snowstorm of 24–25 January 2000. They found that initial errors grew rapidly at scales below 200 km, and that the rapid error growth was dependent on moist processes. In an attempt to generalize these results from a single case study, the present paper studies the error growth in an idealized baroclinic wave amplifying in a conditionally unstable atmosphere. The present results show that without the effects of moisture, there is little error growth in the short-term (0–36 h) forecast error (starting from random noise), even though the basic jet used here produces a rapidly growing synoptic-scale disturbance. With the effect of moisture included, the error is characterized by upscale growth, basically as found by the authors in their study of the numerical prediction of the surprise snowstorm.

Full access