Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Zhenzhong Zeng x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Lihong Zhou, Zhenzhong Zeng, Cesar Azorin-Molina, Yi Liu, Jie Wu, Dashan Wang, Dan Li, Alan D. Ziegler, and Li Dong


To investigate changes in global wind speed phenomena, we constructed homogenized monthly time series (1980–2018) for 4722 meteorological stations. Through examining monthly averaged wind speeds (MWS), we found that seasonal wind speed range (SWSR; calculated as the difference between maximum and minimum MWS) has declined significantly by 10% since 1980 (p < 0.001). This global SWSR reduction was primarily influenced by decreases in Europe (−19%), South America (−16%), Australia (−14%), and Asia (−13%), with corresponding rate reductions of −0.13, −0.08, −0.09, and −0.06 m s−1 decade−1, respectively (p < 0.01). In contrast, the SWSR in North America rose 3%. Important is that the decrease in SWSR occurred regardless of the stilling or reversal of annual wind speed. The shrinking SWSR in Australia and South America was characterized by continuous decreases in maximum MWS and increases in the minimum. For Europe and Asia, maximum and minimum MWS declined initially after 1980, followed by substantial increases in minimum MWS (about 2000 and 2012, respectively) that preserved the long-term reduction in the range. Most reanalysis products (ERA5, ERA-Interim, and MERRA-2) and climate model simulations (AMIP6 and CMIP6) fail to reproduce the observed trends. However, some ocean–atmosphere indices (seasonality characteristics) were correlated significantly with these trends, including the Western Hemisphere warm pool, East Atlantic pattern, Pacific decadal oscillation, and others. These findings are important for increasing the understanding of mechanisms behind wind speed variations that influence a multitude of other biogeophysical processes and the development of efficient wind power generation, now and in the future.

Restricted access
Zhenzhong Zeng, Shilong Piao, Laurent Z. X. Li, Tao Wang, Philippe Ciais, Xu Lian, Yuting Yang, Jiafu Mao, Xiaoying Shi, and Ranga B. Myneni


Leaf area index (LAI) is increasing throughout the globe, implying Earth greening. Global modeling studies support this contention, yet satellite observations and model simulations have never been directly compared. Here, for the first time, a coupled land–climate model was used to quantify the potential impact of the satellite-observed Earth greening over the past 30 years on the terrestrial water cycle. The global LAI enhancement of 8% between the early 1980s and the early 2010s is modeled to have caused increases of 12.0 ± 2.4 mm yr−1 in evapotranspiration and 12.1 ± 2.7 mm yr−1 in precipitation—about 55% ± 25% and 28% ± 6% of the observed increases in land evapotranspiration and precipitation, respectively. In wet regions, the greening did not significantly decrease runoff and soil moisture because it intensified moisture recycling through a coincident increase of evapotranspiration and precipitation. But in dry regions, including the Sahel, west Asia, northern India, the western United States, and the Mediterranean coast, the greening was modeled to significantly decrease soil moisture through its coupling with the atmospheric water cycle. This modeled soil moisture response, however, might have biases resulting from the precipitation biases in the model. For example, the model dry bias might have underestimated the soil moisture response in the observed dry area (e.g., the Sahel and northern India) given that the modeled soil moisture is near the wilting point. Thus, an accurate representation of precipitation and its feedbacks in Earth system models is essential for simulations and predictions of how soil moisture responds to LAI changes, and therefore how the terrestrial water cycle responds to climate change.

Full access