Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Zhenzhong Zeng x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Yuan Yang
,
Ming Pan
,
Peirong Lin
,
Hylke E. Beck
,
Zhenzhong Zeng
,
Dai Yamazaki
,
Cédric H. David
,
Hui Lu
,
Kun Yang
,
Yang Hong
, and
Eric F. Wood

Abstract

Better understanding and quantification of river floods for very local and flashy events calls for modeling capability at fine spatial and temporal scales. However, long-term discharge records with a global coverage suitable for extreme events analysis are still lacking. Here, grounded on recent breakthroughs in global runoff hydrology, river modeling, high resolution hydrography, and climate reanalysis, we developed a 3-hourly river discharge record globally for 2.94 million river reaches during the 40-year period of 1980-2019. The underlying modeling chain consists of the VIC land surface model (0.05°, 3-hourly) that is well calibrated and bias corrected and the RAPID routing model (2.94 million river and catchment vectors), with precipitation input from MSWEP and other meteorological fields downscaled from ERA5. Flood events (above 2-year return) and their characteristics (number, spatial distribution, and seasonality) were extracted and studied. Validations against 3-hourly flow records from 6,000+ gauges in CONUS and daily records from 14,000+ gauges globally show good modeling performance across all flow ranges, good skills in reconstructing flood events (high extremes), and the benefit of (and need for) sub-daily modeling. This data record, referred as Global Reach-level Flood Reanalysis (GRFR), is publicly available at https://www.reachhydro.org/home/records/grfr.

Full access
Yuan Yang
,
Ming Pan
,
Peirong Lin
,
Hylke E. Beck
,
Zhenzhong Zeng
,
Dai Yamazaki
,
Cédric H. David
,
Hui Lu
,
Kun Yang
,
Yang Hong
, and
Eric F. Wood

Abstract

Better understanding and quantification of river floods for very local and “flashy” events calls for modeling capability at fine spatial and temporal scales. However, long-term discharge records with a global coverage suitable for extreme events analysis are still lacking. Here, grounded on recent breakthroughs in global runoff hydrology, river modeling, high-resolution hydrography, and climate reanalysis, we developed a 3-hourly river discharge record globally for 2.94 million river reaches during the 40-yr period of 1980–2019. The underlying modeling chain consists of the VIC land surface model (0.05°, 3-hourly) that is well calibrated and bias corrected and the RAPID routing model (2.94 million river and catchment vectors), with precipitation input from MSWEP and other meteorological fields downscaled from ERA5. Flood events (above 2-yr return) and their characteristics (number, spatial distribution, and seasonality) were extracted and studied. Validations against 3-hourly flow records from 6,000+ gauges in CONUS and daily records from 14,000+ gauges globally show good modeling performance across all flow ranges, good skills in reconstructing flood events (high extremes), and the benefit of (and need for) subdaily modeling. This data record, referred as Global Reach-Level Flood Reanalysis (GRFR), is publicly available at https://www.reachhydro.org/home/records/grfr.

Full access