Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Zhiyong Meng x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Lanqiang Bai
,
Zhiyong Meng
,
Ling Huang
,
Lijun Yan
,
Zhaohui Li
,
Xuehu Mai
,
Yipeng Huang
,
Dan Yao
, and
Xi Wang

Abstract

This work presents an integrated damage, visual, and radar analysis of a tropical cyclone (TC) tornado that has not been documented as detailed as midlatitude tornadoes. On 4 October 2015, an enhanced Fujita 3 (EF3) tornado spawned into Typhoon Mujigae and hit Foshan, Guangdong Province, China. This tornado was generated in a minisupercell ∼350 km northeast of the TC center and lasted about 32 minutes, leaving a southeast-to-northwest damage swath 30.85 km long and 20–570 m wide. Near-surface wind patterns and the size of the tornado, juxtaposition of the condensation funnel with the damage swath and radar signatures, and consistency between near-surface wind speed estimated from visual observations and that estimated using EF scale were revealed based on ground and aerial surveys, radar and surface observations, photographs, and tornado videos. Tornado videos showed two occurrences of vertical subvortices followed by the formation of a horizontal vortex. Some features of the tornado, the parent supercell and mesocyclone, and the convective environment were compared to their U.S. counterparts. This work provides a case review of a tornado with the most comprehensive information ever in China. Damage indicators used to estimate the tornado intensity in this Chinese case were compared with those in the United States, demonstrating the potential applicability of the EF scale in tornado damage surveys outside the United States.

Open access
Yali Luo
,
Renhe Zhang
,
Qilin Wan
,
Bin Wang
,
Wai Kin Wong
,
Zhiqun Hu
,
Ben Jong-Dao Jou
,
Yanluan Lin
,
Richard H. Johnson
,
Chih-Pei Chang
,
Yuejian Zhu
,
Xubin Zhang
,
Hui Wang
,
Rudi Xia
,
Juhui Ma
,
Da-Lin Zhang
,
Mei Gao
,
Yijun Zhang
,
Xi Liu
,
Yangruixue Chen
,
Huijun Huang
,
Xinghua Bao
,
Zheng Ruan
,
Zhehu Cui
,
Zhiyong Meng
,
Jiaxiang Sun
,
Mengwen Wu
,
Hongyan Wang
,
Xindong Peng
,
Weimiao Qian
,
Kun Zhao
, and
Yanjiao Xiao

Abstract

During the presummer rainy season (April–June), southern China often experiences frequent occurrences of extreme rainfall, leading to severe flooding and inundations. To expedite the efforts in improving the quantitative precipitation forecast (QPF) of the presummer rainy season rainfall, the China Meteorological Administration (CMA) initiated a nationally coordinated research project, namely, the Southern China Monsoon Rainfall Experiment (SCMREX) that was endorsed by the World Meteorological Organization (WMO) as a research and development project (RDP) of the World Weather Research Programme (WWRP). The SCMREX RDP (2013–18) consists of four major components: field campaign, database management, studies on physical mechanisms of heavy rainfall events, and convection-permitting numerical experiments including impact of data assimilation, evaluation/improvement of model physics, and ensemble prediction. The pilot field campaigns were carried out from early May to mid-June of 2013–15. This paper: i) describes the scientific objectives, pilot field campaigns, and data sharing of SCMREX; ii) provides an overview of heavy rainfall events during the SCMREX-2014 intensive observing period; and iii) presents examples of preliminary research results and explains future research opportunities.

Full access