Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Zhuo Wang x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Kirsten L. Findell
,
Rowan Sutton
,
Nico Caltabiano
,
Anca Brookshaw
,
Patrick Heimbach
,
Masahide Kimoto
,
Scott Osprey
,
Doug Smith
,
James S. Risbey
,
Zhuo Wang
,
Lijing Cheng
,
Leandro B. Diaz
,
Markus G. Donat
,
Michael Ek
,
June-Yi Lee
,
Shoshiro Minobe
,
Matilde Rusticucci
,
Frederic Vitart
, and
Lin Wang

Abstract

The World Climate Research Programme (WCRP) envisions a world “that uses sound, relevant, and timely climate science to ensure a more resilient present and sustainable future for humankind.” This bold vision requires the climate science community to provide actionable scientific information that meets the evolving needs of societies all over the world. To realize its vision, WCRP has created five Lighthouse Activities to generate international commitment and support to tackle some of the most pressing challenges in climate science today. The overarching goal of the Lighthouse Activity on Explaining and Predicting Earth System Change is to develop an integrated capability to understand, attribute, and predict annual to decadal changes in the Earth system, including capabilities for early warning of potential high impact changes and events. This article provides an overview of both the scientific challenges that must be addressed, and the research and other activities required to achieve this goal. The work is organized in three thematic areas: (i) monitoring and modeling Earth system change; (ii) integrated attribution, prediction, and projection; and (iii) assessment of current and future hazards. Also discussed are the benefits that the new capability will deliver. These include improved capabilities for early warning of impactful changes in the Earth system, more reliable assessments of meteorological hazard risks, and quantitative attribution statements to support the Global Annual to Decadal Climate Update and State of the Climate reports issued by the World Meteorological Organization.

Open access
Michael T. Montgomery
,
Christopher Davis
,
Timothy Dunkerton
,
Zhuo Wang
,
Christopher Velden
,
Ryan Torn
,
Sharanya J. Majumdar
,
Fuqing Zhang
,
Roger K. Smith
,
Lance Bosart
,
Michael M. Bell
,
Jennifer S. Haase
,
Andrew Heymsfield
,
Jorgen Jensen
,
Teresa Campos
, and
Mark A. Boothe

The principal hypotheses of a new model of tropical cyclogenesis, known as the marsupial paradigm, were tested in the context of Atlantic tropical disturbances during the National Science Foundation (NSF)-sponsored Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) experiment in 2010. PREDICT was part of a tri-agency collaboration, along with the National Aeronautics and Space Administration's Genesis and Rapid Intensification Processes (NASA GRIP) experiment and the National Oceanic and Atmospheric Administration's Intensity Forecasting Experiment (NOAA IFEX), intended to examine both developing and nondeveloping tropical disturbances.

During PREDICT, a total of 26 missions were flown with the NSF/NCAR Gulfstream V (GV) aircraft sampling eight tropical disturbances. Among these were four cases (Fiona, ex-Gaston, Karl, and Matthew) for which three or more missions were conducted, many on consecutive days. Because of the scientific focus on the Lagrangian nature of the tropical cyclogenesis process, a wave-relative frame of reference was adopted throughout the experiment in which various model- and satellite-based products were examined to guide aircraft planning and real-time operations. Here, the scientific products and examples of data collected are highlighted for several of the disturbances. The suite of cases observed represents arguably the most comprehensive, self-consistent dataset ever collected on the environment and mesoscale structure of developing and nondeveloping predepression disturbances.

Full access