Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Zongjian Ke x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Zongjian Ke
Peiqun Zhang
Wenjie Dong
, and
Laurent Li


Seasonal climate prediction, in general, can achieve excellent results with a multimodel system. A relevant calibration of individual models and an optimal combination of individual models are the key elements leading to this success. However, this commonly used approach appears to be insufficient to remove the intermodel systematic errors (IMSE), which represent similar error properties in individual models after their calibration. A new postprocessing method is proposed to correct the IMSE and to increase the prediction skill. The first step consists of carrying out a diagnosis on the calibrated errors before constructing the multimodel ensemble. In contrast to previous studies, the calibrated errors here are treated directly as the investigation target, and temporal correlation coefficients between the calibrated errors and other meteorological variables are calculated. In the second stage, mathematical and statistical tools are applied in an effort to forecast the IMSE in individual models. Then, the IMSE are removed from the calibrated results and the new corrected data are used to construct the multimodel ensemble. The hindcast of the European Union–funded Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) multimodel system is used to test the method. The simulated Southern Oscillation index is used to diagnose and to correct the calibrated errors of the simulated precipitation. The prediction qualities of the corrected data are assessed and compared with those of the uncorrected dataset. The results show that it is feasible to improve seasonal precipitation prediction by forecasting and correcting the IMSE. This improvement is visible not only for the individual models, but also for the multimodel ensemble.

Full access