Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Bernhard Vogel x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Monika Niemand, Ottmar Möhler, Bernhard Vogel, Heike Vogel, Corinna Hoose, Paul Connolly, Holger Klein, Heinz Bingemer, Paul DeMott, Julian Skrotzki, and Thomas Leisner


In climate and weather models, the quantitative description of aerosol and cloud processes relies on simplified assumptions. This contributes major uncertainties to the prediction of global and regional climate change. Therefore, models need good parameterizations for heterogeneous ice nucleation by atmospheric aerosols. Here the authors present a new parameterization of immersion freezing on desert dust particles derived from a large number of experiments carried out at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber facility. The parameterization is valid in the temperature range between −12° and −36°C at or above water saturation and can be used in atmospheric models that include information about the dust surface area. The new parameterization was applied to calculate distribution maps of ice nuclei during a Saharan dust event based on model results from the regional-scale model Consortium for Small-Scale Modelling–Aerosols and Reactive Trace Gases (COSMO-ART). The results were then compared to measurements at the Taunus Observatory on Mount Kleiner Feldberg, Germany, and to three other parameterizations applied to the dust outbreak. The aerosol number concentration and surface area from the COSMO-ART model simulation were taken as input to different parameterizations. Although the surface area from the model agreed well with aerosol measurements during the dust event at Kleiner Feldberg, the ice nuclei (IN) number concentration calculated from the new surface-area-based parameterization was about a factor of 13 less than IN measurements during the same event. Systematic differences of more than a factor of 10 in the IN number concentration were also found among the different parameterizations. Uncertainties in the modeled and measured parameters probably both contribute to this discrepancy and should be addressed in future studies.

Full access
Romy Ullrich, Corinna Hoose, Daniel J. Cziczo, Karl D. Froyd, Joshua P. Schwarz, Anne E. Perring, Thaopaul V. Bui, Carl G. Schmitt, Bernhard Vogel, Daniel Rieger, Thomas Leisner, and Ottmar Möhler


The contribution of heterogeneous ice nucleation to the formation of cirrus cloud ice crystals is still not well quantified. This results in large uncertainties when predicting cirrus radiative effects and their role in Earth’s climate system. The goal of this case study is to simulate the composition, and thus activation conditions, of ice nucleating particles (INPs) to evaluate their contribution to heterogeneous cirrus ice formation in relation to homogeneous ice nucleation. For this, the regional model COSMO—Aerosols and Reactive Trace Gases (COSMO-ART) was used to simulate a synoptic cirrus cloud over Texas on 13 April 2011. The simulated INP composition was then compared to measured ice residual particle (IRP) composition from the actual event obtained during the NASA Midlatitude Airborne Cirrus Properties Experiment (MACPEX) aircraft campaign. These IRP measurements indicated that the dominance of heterogeneous ice nucleation was mainly driven by mineral dust with contributions from a variety of other particle types. Applying realistic activation thresholds and concentrations of airborne transported mineral dust and biomass-burning particles, the model implementing the heterogeneous ice nucleation parameterization scheme of Ullrich et al. is able to reproduce the overall dominating ice formation mechanism in contrast to the model simulation with the scheme of Phillips et al. However, the model showed flaws in reproducing the IRP composition.

Full access