Search Results
You are looking at 1 - 8 of 8 items for
- Author or Editor: Dalia B. Kirschbaum x
- Refine by Access: All Content x
Abstract
Satellite multisensor precipitation products (SMPPs) have a variety of potential uses but suffer from relatively poor accuracy due to systematic biases and random errors in precipitation occurrence and magnitude. The censored, shifted gamma distribution (CSGD) is used here to characterize the Tropical Rainfall Measurement Mission Multisatellite Precipitation Analysis (TMPA), a commonly used SMPP, and to compare it against the rain gauge–based North American Land Data Assimilation System phase 2 (NLDAS-2) reference precipitation dataset across the conterminous United States. The CSGD describes both the occurrence and the magnitude of precipitation. Climatological CSGD characterization reveals significant regional differences between TMPA and NLDAS-2 in terms of magnitude and probability of occurrence. A flexible CSGD-based error modeling framework is also used to quantify errors in TMPA relative to NLDAS-2. The framework can model conditional bias as either a linear or nonlinear function of satellite precipitation rate and can produce a “conditional CSGD” describing the distribution of “true” precipitation based on a satellite observation. The framework is also used to “merge” TMPA with atmospheric variables from version 2 of the Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) to reduce SMPP errors. Despite the coarse resolution of MERRA-2, this merging offers robust reductions in random error due to the better performance of numerical models in resolving stratiform precipitation. Improvements in the near-real-time version of TMPA are relatively greater than for the higher-latency research version.
Abstract
Satellite multisensor precipitation products (SMPPs) have a variety of potential uses but suffer from relatively poor accuracy due to systematic biases and random errors in precipitation occurrence and magnitude. The censored, shifted gamma distribution (CSGD) is used here to characterize the Tropical Rainfall Measurement Mission Multisatellite Precipitation Analysis (TMPA), a commonly used SMPP, and to compare it against the rain gauge–based North American Land Data Assimilation System phase 2 (NLDAS-2) reference precipitation dataset across the conterminous United States. The CSGD describes both the occurrence and the magnitude of precipitation. Climatological CSGD characterization reveals significant regional differences between TMPA and NLDAS-2 in terms of magnitude and probability of occurrence. A flexible CSGD-based error modeling framework is also used to quantify errors in TMPA relative to NLDAS-2. The framework can model conditional bias as either a linear or nonlinear function of satellite precipitation rate and can produce a “conditional CSGD” describing the distribution of “true” precipitation based on a satellite observation. The framework is also used to “merge” TMPA with atmospheric variables from version 2 of the Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) to reduce SMPP errors. Despite the coarse resolution of MERRA-2, this merging offers robust reductions in random error due to the better performance of numerical models in resolving stratiform precipitation. Improvements in the near-real-time version of TMPA are relatively greater than for the higher-latency research version.
Abstract
A globally consistent ground validation method for remotely sensed precipitation products is crucial for building confidence in these products. This study develops a new methodology to validate the IMERG precipitation products through the use of SMAP soil moisture changes as a proxy for precipitation occurrence. Using a standard 2 × 2 contingency table method, preliminary results provide confidence in SMAP’s ability to be utilized as a validation tool for IMERG as results are comparable to previous validation studies. However, the method allows for an overestimate of false alarm frequency due to light precipitation events that can evaporate before the subsequent SMAP overpass and changes in overpass-to-overpass SMAP soil moisture that are within the range of SMAP uncertainty. To counter these issues, a 3 × 3 contingency table is used to reduce noise and extract more signal from the detection method. Through the use of this novel approach, the validation method produces a global mean POD of 0.64 and global mean FAR of 0.40, the first global-scale ground validation skill scores for the IMERG products. Advancing the method to validate precipitation quantity and the development of a real-time validation for the IMERG Early product are the crucial next developments.
Significance Statement
We wanted to see if there was a method in which remotely sensed precipitation observations could be validated at a near-global scale for land areas. Scientific literature is filled with studies that validate various precipitation datasets over local-to-regional scales, with very few extending beyond that domain. This study provides a robust first attempt at validating a global precipitation product at a global scale using changes in remotely sensed soil moisture as an independent proxy for precipitation presence/absence. While the method demonstrates that there is skill in using soil moisture as a tool to validate precipitation at the global scale, we find that there are still instances of a systemic bias for arid climate regimes. This method lays the groundwork for future studies to provide a comprehensive global validation in a globally consistent manner.
Abstract
A globally consistent ground validation method for remotely sensed precipitation products is crucial for building confidence in these products. This study develops a new methodology to validate the IMERG precipitation products through the use of SMAP soil moisture changes as a proxy for precipitation occurrence. Using a standard 2 × 2 contingency table method, preliminary results provide confidence in SMAP’s ability to be utilized as a validation tool for IMERG as results are comparable to previous validation studies. However, the method allows for an overestimate of false alarm frequency due to light precipitation events that can evaporate before the subsequent SMAP overpass and changes in overpass-to-overpass SMAP soil moisture that are within the range of SMAP uncertainty. To counter these issues, a 3 × 3 contingency table is used to reduce noise and extract more signal from the detection method. Through the use of this novel approach, the validation method produces a global mean POD of 0.64 and global mean FAR of 0.40, the first global-scale ground validation skill scores for the IMERG products. Advancing the method to validate precipitation quantity and the development of a real-time validation for the IMERG Early product are the crucial next developments.
Significance Statement
We wanted to see if there was a method in which remotely sensed precipitation observations could be validated at a near-global scale for land areas. Scientific literature is filled with studies that validate various precipitation datasets over local-to-regional scales, with very few extending beyond that domain. This study provides a robust first attempt at validating a global precipitation product at a global scale using changes in remotely sensed soil moisture as an independent proxy for precipitation presence/absence. While the method demonstrates that there is skill in using soil moisture as a tool to validate precipitation at the global scale, we find that there are still instances of a systemic bias for arid climate regimes. This method lays the groundwork for future studies to provide a comprehensive global validation in a globally consistent manner.
Abstract
Many existing models that predict landslide hazards utilize ground-based sources of precipitation data. In locations where ground-based precipitation observations are limited (i.e., a vast majority of the globe), or for landslide hazard models that assess regional or global domains, satellite multisensor precipitation products offer a promising near-real-time alternative to ground-based data. NASA’s global Landslide Hazard Assessment for Situational Awareness (LHASA) model uses the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) product to issue hazard “nowcasts” in near–real time for areas that are currently at risk for landsliding. Satellite-based precipitation estimates, however, can contain considerable systematic bias and random error, especially over mountainous terrain and during extreme rainfall events. This study combines a precipitation error modeling framework with a probabilistic adaptation of LHASA. Compared with the routine version of LHASA, this probabilistic version correctly predicts more of the observed landslides in the study region with fewer false alarms by high hazard nowcasts. This study demonstrates that improvements in landslide hazard prediction can be achieved regardless of whether the IMERG error model is trained using abundant ground-based precipitation observations or using far fewer and more scattered observations, suggesting that the approach is viable in data-limited regions. Results emphasize the importance of accounting for both random error and systematic satellite precipitation bias. The approach provides an example of how environmental prediction models can incorporate satellite precipitation uncertainty. Other applications such as flood and drought monitoring and forecasting could likely benefit from consideration of precipitation uncertainty.
Abstract
Many existing models that predict landslide hazards utilize ground-based sources of precipitation data. In locations where ground-based precipitation observations are limited (i.e., a vast majority of the globe), or for landslide hazard models that assess regional or global domains, satellite multisensor precipitation products offer a promising near-real-time alternative to ground-based data. NASA’s global Landslide Hazard Assessment for Situational Awareness (LHASA) model uses the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) product to issue hazard “nowcasts” in near–real time for areas that are currently at risk for landsliding. Satellite-based precipitation estimates, however, can contain considerable systematic bias and random error, especially over mountainous terrain and during extreme rainfall events. This study combines a precipitation error modeling framework with a probabilistic adaptation of LHASA. Compared with the routine version of LHASA, this probabilistic version correctly predicts more of the observed landslides in the study region with fewer false alarms by high hazard nowcasts. This study demonstrates that improvements in landslide hazard prediction can be achieved regardless of whether the IMERG error model is trained using abundant ground-based precipitation observations or using far fewer and more scattered observations, suggesting that the approach is viable in data-limited regions. Results emphasize the importance of accounting for both random error and systematic satellite precipitation bias. The approach provides an example of how environmental prediction models can incorporate satellite precipitation uncertainty. Other applications such as flood and drought monitoring and forecasting could likely benefit from consideration of precipitation uncertainty.
Abstract
The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimilation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting (NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern United States using an object-based analysis framework that decomposes gridded precipitation fields into storm objects. As an alternative to conventional “grid-by-grid analysis,” the object-based approach provides a promising way to diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WRF, while the less organized spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more accurate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms compared to smaller, weaker storms. IMERG’s accuracy depends on the input microwave and infrared data sources; NU-WRF does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into satellite precipitation performance and that the satellite precipitation community should further explore the potential for “hybrid” data-driven and physics-driven estimates in order to make optimal usage of satellite observations.
Abstract
The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimilation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting (NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern United States using an object-based analysis framework that decomposes gridded precipitation fields into storm objects. As an alternative to conventional “grid-by-grid analysis,” the object-based approach provides a promising way to diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WRF, while the less organized spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more accurate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms compared to smaller, weaker storms. IMERG’s accuracy depends on the input microwave and infrared data sources; NU-WRF does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into satellite precipitation performance and that the satellite precipitation community should further explore the potential for “hybrid” data-driven and physics-driven estimates in order to make optimal usage of satellite observations.
Abstract
Long-term precipitation records are vital to many applications, especially the study of extreme events. The Tropical Rainfall Measuring Mission (TRMM) has served this need, but TRMM’s successor mission, Global Precipitation Measurement (GPM), does not yet provide a long-term record. Quantile mapping, the conversion of values across paired empirical distributions, offers a simple, established means to approximate such long-term statistics but only within appropriately defined domains. This method was applied to a case study in Central America, demonstrating that quantile mapping between TRMM and GPM data maintains the performance of a real-time landslide model. Use of quantile mapping could bring the benefits of the latest satellite-based precipitation dataset to existing user communities, such as those for hazard assessment, crop forecasting, numerical weather prediction, and disease tracking.
Abstract
Long-term precipitation records are vital to many applications, especially the study of extreme events. The Tropical Rainfall Measuring Mission (TRMM) has served this need, but TRMM’s successor mission, Global Precipitation Measurement (GPM), does not yet provide a long-term record. Quantile mapping, the conversion of values across paired empirical distributions, offers a simple, established means to approximate such long-term statistics but only within appropriately defined domains. This method was applied to a case study in Central America, demonstrating that quantile mapping between TRMM and GPM data maintains the performance of a real-time landslide model. Use of quantile mapping could bring the benefits of the latest satellite-based precipitation dataset to existing user communities, such as those for hazard assessment, crop forecasting, numerical weather prediction, and disease tracking.
Abstract
The measurement of global precipitation, both rainfall and snowfall, is critical to a wide range of users and applications. Rain gauges are indispensable in the measurement of precipitation, remaining the de facto standard for precipitation information across Earth’s surface for hydrometeorological purposes. However, their distribution across the globe is limited: over land their distribution and density is variable, while over oceans very few gauges exist and where measurements are made, they may not adequately reflect the rainfall amounts of the broader area. Critically, the number of gauges available, or appropriate for a particular study, varies greatly across the Earth owing to temporal sampling resolutions, periods of operation, data latency, and data access. Numbers of gauges range from a few thousand available in near–real time to about 100,000 for all “official” gauges, and to possibly hundreds of thousands if all possible gauges are included. Gauges routinely used in the generation of global precipitation products cover an equivalent area of between about 250 and 3,000 m2. For comparison, the center circle of a soccer pitch or tennis court is about 260 m2. Although each gauge should represent more than just the gauge orifice, autocorrelation distances of precipitation vary greatly with regime and the integration period. Assuming each Global Precipitation Climatology Centre (GPCC)–available gauge is independent and represents a surrounding area of 5-km radius, this represents only about 1% of Earth’s surface. The situation is further confounded for snowfall, which has a greater measurement uncertainty.
Abstract
The measurement of global precipitation, both rainfall and snowfall, is critical to a wide range of users and applications. Rain gauges are indispensable in the measurement of precipitation, remaining the de facto standard for precipitation information across Earth’s surface for hydrometeorological purposes. However, their distribution across the globe is limited: over land their distribution and density is variable, while over oceans very few gauges exist and where measurements are made, they may not adequately reflect the rainfall amounts of the broader area. Critically, the number of gauges available, or appropriate for a particular study, varies greatly across the Earth owing to temporal sampling resolutions, periods of operation, data latency, and data access. Numbers of gauges range from a few thousand available in near–real time to about 100,000 for all “official” gauges, and to possibly hundreds of thousands if all possible gauges are included. Gauges routinely used in the generation of global precipitation products cover an equivalent area of between about 250 and 3,000 m2. For comparison, the center circle of a soccer pitch or tennis court is about 260 m2. Although each gauge should represent more than just the gauge orifice, autocorrelation distances of precipitation vary greatly with regime and the integration period. Assuming each Global Precipitation Climatology Centre (GPCC)–available gauge is independent and represents a surrounding area of 5-km radius, this represents only about 1% of Earth’s surface. The situation is further confounded for snowfall, which has a greater measurement uncertainty.
Abstract
Precipitation is the fundamental source of freshwater in the water cycle. It is critical for everyone, from subsistence farmers in Africa to weather forecasters around the world, to know when, where, and how much rain and snow is falling. The Global Precipitation Measurement (GPM) Core Observatory spacecraft, launched in February 2014, has the most advanced instruments to measure precipitation from space and, together with other satellite information, provides high-quality merged data on rain and snow worldwide every 30 min. Data from GPM and the predecessor Tropical Rainfall Measuring Mission (TRMM) have been fundamental to a broad range of applications and end-user groups and are among the most widely downloaded Earth science data products across NASA. End-user applications have rapidly become an integral component in translating satellite data into actionable information and knowledge used to inform policy and enhance decision-making at local to global scales. In this article, we present NASA precipitation data, capabilities, and opportunities from the perspective of end users. We outline some key examples of how TRMM and GPM data are being applied across a broad range of sectors, including numerical weather prediction, disaster modeling, agricultural monitoring, and public health research. This work provides a discussion of some of the current needs of the community as well as future plans to better support end-user communities across the globe to utilize this data for their own applications.
Abstract
Precipitation is the fundamental source of freshwater in the water cycle. It is critical for everyone, from subsistence farmers in Africa to weather forecasters around the world, to know when, where, and how much rain and snow is falling. The Global Precipitation Measurement (GPM) Core Observatory spacecraft, launched in February 2014, has the most advanced instruments to measure precipitation from space and, together with other satellite information, provides high-quality merged data on rain and snow worldwide every 30 min. Data from GPM and the predecessor Tropical Rainfall Measuring Mission (TRMM) have been fundamental to a broad range of applications and end-user groups and are among the most widely downloaded Earth science data products across NASA. End-user applications have rapidly become an integral component in translating satellite data into actionable information and knowledge used to inform policy and enhance decision-making at local to global scales. In this article, we present NASA precipitation data, capabilities, and opportunities from the perspective of end users. We outline some key examples of how TRMM and GPM data are being applied across a broad range of sectors, including numerical weather prediction, disaster modeling, agricultural monitoring, and public health research. This work provides a discussion of some of the current needs of the community as well as future plans to better support end-user communities across the globe to utilize this data for their own applications.
Abstract
Precipitation is a key source of freshwater; therefore, observing global patterns of precipitation and its intensity is important for science, society, and understanding our planet in a changing climate. In 2014, the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) launched the Global Precipitation Measurement (GPM) Core Observatory (CO) spacecraft. The GPM CO carries the most advanced precipitation sensors currently in space including a dual-frequency precipitation radar provided by JAXA for measuring the three-dimensional structures of precipitation and a well-calibrated, multifrequency passive microwave radiometer that provides wide-swath precipitation data. The GPM CO was designed to measure rain rates from 0.2 to 110.0 mm h−1 and to detect moderate to intense snow events. The GPM CO serves as a reference for unifying the data from a constellation of partner satellites to provide next-generation, merged precipitation estimates globally and with high spatial and temporal resolutions. Through improved measurements of rain and snow, precipitation data from GPM provides new information such as details on precipitation structure and intensity; observations of hurricanes and typhoons as they transition from the tropics to the midlatitudes; data to advance near-real-time hazard assessment for floods, landslides, and droughts; inputs to improve weather and climate models; and insights into agricultural productivity, famine, and public health. Since launch, GPM teams have calibrated satellite instruments, refined precipitation retrieval algorithms, expanded science investigations, and processed and disseminated precipitation data for a range of applications. The current status of GPM, its ongoing science, and its future plans are presented.
Abstract
Precipitation is a key source of freshwater; therefore, observing global patterns of precipitation and its intensity is important for science, society, and understanding our planet in a changing climate. In 2014, the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) launched the Global Precipitation Measurement (GPM) Core Observatory (CO) spacecraft. The GPM CO carries the most advanced precipitation sensors currently in space including a dual-frequency precipitation radar provided by JAXA for measuring the three-dimensional structures of precipitation and a well-calibrated, multifrequency passive microwave radiometer that provides wide-swath precipitation data. The GPM CO was designed to measure rain rates from 0.2 to 110.0 mm h−1 and to detect moderate to intense snow events. The GPM CO serves as a reference for unifying the data from a constellation of partner satellites to provide next-generation, merged precipitation estimates globally and with high spatial and temporal resolutions. Through improved measurements of rain and snow, precipitation data from GPM provides new information such as details on precipitation structure and intensity; observations of hurricanes and typhoons as they transition from the tropics to the midlatitudes; data to advance near-real-time hazard assessment for floods, landslides, and droughts; inputs to improve weather and climate models; and insights into agricultural productivity, famine, and public health. Since launch, GPM teams have calibrated satellite instruments, refined precipitation retrieval algorithms, expanded science investigations, and processed and disseminated precipitation data for a range of applications. The current status of GPM, its ongoing science, and its future plans are presented.