Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: H-J. Isemer x
- Article x
- Refine by Access: All Content x
Over the past 9 years, the Global Energy and Water Cycle Experiment (GEWEX), under the auspices of the World Climate Research Programme (WCRP), has coordinated the activities of the Continental Scale Experiments (CSEs) and other related research through the GEWEX Hydrometeorology Panel (GHP). The GHP contributes to the WCRP'S objective of “developing the fundamental scientific understanding of the physical climate system and climate processes [that is] needed to determine to what extent climate can be predicted and the extent of man's influence on climate.” It also contributes to more specific GEWEX objectives, such as determining the hydrological cycle and energy fluxes, modeling the global hydrological cycle and its impacts, developing a capability to predict variations in global and regional hydrological processes, and fostering the development of observing techniques, data management and assimilation systems. GHP activities include diagnosis, simulation, and experimental prediction of regional water balances and process and modeling studies aimed at understanding and predicting the variability of the global water cycle, with an emphasis on regional coupled land–atmosphere processes. GHP efforts are central to providing a scientific basis for assessing critical science issues, such as the consequences of climate change for the intensification of the global hydrological cycle and its potential impacts on regional water resources. This article provides an overview of the role and evolution of the GHP and describes scientific issues that the GHP is seeking to address in collaboration with the international science community.
Over the past 9 years, the Global Energy and Water Cycle Experiment (GEWEX), under the auspices of the World Climate Research Programme (WCRP), has coordinated the activities of the Continental Scale Experiments (CSEs) and other related research through the GEWEX Hydrometeorology Panel (GHP). The GHP contributes to the WCRP'S objective of “developing the fundamental scientific understanding of the physical climate system and climate processes [that is] needed to determine to what extent climate can be predicted and the extent of man's influence on climate.” It also contributes to more specific GEWEX objectives, such as determining the hydrological cycle and energy fluxes, modeling the global hydrological cycle and its impacts, developing a capability to predict variations in global and regional hydrological processes, and fostering the development of observing techniques, data management and assimilation systems. GHP activities include diagnosis, simulation, and experimental prediction of regional water balances and process and modeling studies aimed at understanding and predicting the variability of the global water cycle, with an emphasis on regional coupled land–atmosphere processes. GHP efforts are central to providing a scientific basis for assessing critical science issues, such as the consequences of climate change for the intensification of the global hydrological cycle and its potential impacts on regional water resources. This article provides an overview of the role and evolution of the GHP and describes scientific issues that the GHP is seeking to address in collaboration with the international science community.
The Baltic Sea Experiment (BALTEX) is one of the five continental-scale experiments of the Global Energy and Water Cycle Experiment (GEWEX). More than 50 research groups from 14 European countries are participating in this project to measure and model the energy and water cycle over the large drainage basin of the Baltic Sea in northern Europe. BALTEX aims to provide a better understanding of the processes of the climate system and to improve and to validate the water cycle in regional numerical models for weather forecasting and climate studies. A major effort is undertaken to couple interactively the atmosphere with the vegetated continental surfaces and the Baltic Sea including its sea ice. The intensive observational and modeling phase BRIDGE, which is a contribution to the Coordinated Enhanced Observing Period of GEWEX, will provide enhanced datasets for the period October 1999–February 2002 to validate numerical models and satellite products. Major achievements have been obtained in an improved understanding of related exchange processes. For the first time an interactive atmosphere–ocean–land surface model for the Baltic Sea was tested. This paper reports on major activities and some results.
The Baltic Sea Experiment (BALTEX) is one of the five continental-scale experiments of the Global Energy and Water Cycle Experiment (GEWEX). More than 50 research groups from 14 European countries are participating in this project to measure and model the energy and water cycle over the large drainage basin of the Baltic Sea in northern Europe. BALTEX aims to provide a better understanding of the processes of the climate system and to improve and to validate the water cycle in regional numerical models for weather forecasting and climate studies. A major effort is undertaken to couple interactively the atmosphere with the vegetated continental surfaces and the Baltic Sea including its sea ice. The intensive observational and modeling phase BRIDGE, which is a contribution to the Coordinated Enhanced Observing Period of GEWEX, will provide enhanced datasets for the period October 1999–February 2002 to validate numerical models and satellite products. Major achievements have been obtained in an improved understanding of related exchange processes. For the first time an interactive atmosphere–ocean–land surface model for the Baltic Sea was tested. This paper reports on major activities and some results.