Search Results
You are looking at 1 - 10 of 78 items for
- Author or Editor: Harold E. Brooks x
- Refine by Access: All Content x
Changes over the years in tornado-warning performance in the United States can be modeled from the perspective of signal detection theory. From this view, it can be seen that there have been distinct periods of change in performance, most likely associated with deployment of radars, and changes in scientific understanding and training. The model also makes it clear that improvements in the false alarm ratio can only occur at the cost of large decreases in the probability of detection, or with large improvements in the overall quality of the warning system.
Changes over the years in tornado-warning performance in the United States can be modeled from the perspective of signal detection theory. From this view, it can be seen that there have been distinct periods of change in performance, most likely associated with deployment of radars, and changes in scientific understanding and training. The model also makes it clear that improvements in the false alarm ratio can only occur at the cost of large decreases in the probability of detection, or with large improvements in the overall quality of the warning system.
Abstract
Reported path lengths and widths of tornadoes have been modeled using Weibull distributions for different Fujita (F) scale values. The fits are good over a wide range of lengths and widths. Path length and width tend to increase with increasing F scale, although the temporal nonstationarity of the data for some parts of the data (such as width of F3 tornadoes) is large enough that caution must be exercised in interpretation of short periods of record. The statistical distributions also demonstrate that, as the length or width increases, the most likely F-scale value associated with the length or width tends to increase. Nevertheless, even for long or wide tornadoes, there is a significant probability of a range of possible F values, so that simple observation of the length or width is insufficient to make an accurate estimate of the F scale.
Abstract
Reported path lengths and widths of tornadoes have been modeled using Weibull distributions for different Fujita (F) scale values. The fits are good over a wide range of lengths and widths. Path length and width tend to increase with increasing F scale, although the temporal nonstationarity of the data for some parts of the data (such as width of F3 tornadoes) is large enough that caution must be exercised in interpretation of short periods of record. The statistical distributions also demonstrate that, as the length or width increases, the most likely F-scale value associated with the length or width tends to increase. Nevertheless, even for long or wide tornadoes, there is a significant probability of a range of possible F values, so that simple observation of the length or width is insufficient to make an accurate estimate of the F scale.
Abstract
Very few studies on the occurrence of tornadoes in Poland have been performed and, therefore, their temporal and spatial variability have not been well understood. This article describes an updated climatology of tornadoes in Poland and the major problems related to the database. In this study, the results of an investigation of tornado occurrence in a 100-yr historical record (1899–1998) and a more recent 15-yr observational dataset (1999–2013) are presented. A total of 269 tornado cases derived from the European Severe Weather Database are used in the analysis. The cases are divided according to their strength on the F scale with weak tornadoes (unrated/F0/F1; 169 cases), significant tornadoes (F2/F3/F4; 66 cases), and waterspouts (34 cases). The tornado season extends from May to September (84% of all cases) with the seasonal peak for tornadoes occurring over land in July (23% of all land cases) and waterspouts in August (50% of all waterspouts). On average 8–14 tornadoes (including 2–3 waterspouts) with 2 strong tornadoes occur each year and 1 violent one occurs every 12–19 years. The maximum daily probability for weak and significant tornadoes occurs between 1500 and 1800 UTC while it occurs between 0900 and 1200 UTC for waterspouts. Tornadoes over land are most likely to occur in the south-central part of the country known as the “Polish Tornado Alley.” Cases of strong, and even violent, tornadoes that caused deaths indicate that the possibility of a large-fatality tornado in Poland cannot be ignored.
Abstract
Very few studies on the occurrence of tornadoes in Poland have been performed and, therefore, their temporal and spatial variability have not been well understood. This article describes an updated climatology of tornadoes in Poland and the major problems related to the database. In this study, the results of an investigation of tornado occurrence in a 100-yr historical record (1899–1998) and a more recent 15-yr observational dataset (1999–2013) are presented. A total of 269 tornado cases derived from the European Severe Weather Database are used in the analysis. The cases are divided according to their strength on the F scale with weak tornadoes (unrated/F0/F1; 169 cases), significant tornadoes (F2/F3/F4; 66 cases), and waterspouts (34 cases). The tornado season extends from May to September (84% of all cases) with the seasonal peak for tornadoes occurring over land in July (23% of all land cases) and waterspouts in August (50% of all waterspouts). On average 8–14 tornadoes (including 2–3 waterspouts) with 2 strong tornadoes occur each year and 1 violent one occurs every 12–19 years. The maximum daily probability for weak and significant tornadoes occurs between 1500 and 1800 UTC while it occurs between 0900 and 1200 UTC for waterspouts. Tornadoes over land are most likely to occur in the south-central part of the country known as the “Polish Tornado Alley.” Cases of strong, and even violent, tornadoes that caused deaths indicate that the possibility of a large-fatality tornado in Poland cannot be ignored.
Abstract
Flash flooding is frequently associated with heavy precipitation (defined here as ≥1 in. h−1) occurring over a short period of time. To begin a study of flash flood–producing rain events, the Hourly Precipitation Dataset (HPD) is used to develop a climatology of heavy rains on timescales of 3 h or less across the contiguous United States. Analyses of this dataset show a distinct seasonal cycle in the distribution of heavy rain events that begins along the Gulf Coast and expands into the midwestern states during the summer. This general evolution is very similar to that observed for flash floods, suggesting that the HPD can help in defining the climatological threat for flash floods.
Abstract
Flash flooding is frequently associated with heavy precipitation (defined here as ≥1 in. h−1) occurring over a short period of time. To begin a study of flash flood–producing rain events, the Hourly Precipitation Dataset (HPD) is used to develop a climatology of heavy rains on timescales of 3 h or less across the contiguous United States. Analyses of this dataset show a distinct seasonal cycle in the distribution of heavy rain events that begins along the Gulf Coast and expands into the midwestern states during the summer. This general evolution is very similar to that observed for flash floods, suggesting that the HPD can help in defining the climatological threat for flash floods.
Abstract
After the tornadoes of 3 May 1999, the Federal Emergency Management Agency formed a Building Performance Assessment Team (BPAT) to examine the main tornado paths during the outbreak and to make recommendations based on the damage they saw. This is the first time a tornado disaster has been subjected to a BPAT investigation. Some aspects of the BPAT final report are reviewed and considered in the context of tornado preparedness in Kansas and Oklahoma. Although the preparedness efforts of many public and private institutions apparently played a large role in reducing casualties from the storm, a number of building deficiencies were found during the BPAT's evaluation. Especially in public facilities, there are several aspects of tornado preparedness that could be improved. Moreover, there is clear evidence that a nonnegligible fraction of the damage associated with these storms could have been mitigated with some relatively simple and inexpensive construction enhancements. Widespread implementation of these enhancements would reduce projectile loading and its associated threats to both life and property.
Abstract
After the tornadoes of 3 May 1999, the Federal Emergency Management Agency formed a Building Performance Assessment Team (BPAT) to examine the main tornado paths during the outbreak and to make recommendations based on the damage they saw. This is the first time a tornado disaster has been subjected to a BPAT investigation. Some aspects of the BPAT final report are reviewed and considered in the context of tornado preparedness in Kansas and Oklahoma. Although the preparedness efforts of many public and private institutions apparently played a large role in reducing casualties from the storm, a number of building deficiencies were found during the BPAT's evaluation. Especially in public facilities, there are several aspects of tornado preparedness that could be improved. Moreover, there is clear evidence that a nonnegligible fraction of the damage associated with these storms could have been mitigated with some relatively simple and inexpensive construction enhancements. Widespread implementation of these enhancements would reduce projectile loading and its associated threats to both life and property.
Abstract
One of the challenges of providing probabilistic information on a multitude of spatiotemporal scales is ensuring that information is both accurate and useful to decision-makers. Focusing on larger spatiotemporal scales (i.e., from convective outlook to weather watch scales), historical severe weather reports are analyzed to begin to understand the spatiotemporal scales that hazardous weather events are contained within. Reports from the Storm Prediction Center’s report archive are placed onto grids of differing spatial scales and then split into 24-h convective outlook days (1200–1200 UTC). These grids are then analyzed temporally to assess over what fraction of the day a single location would generally experience severe weather events. Different combinations of temporal and spatial scales are tested to determine how the reference class (or the choice of what scales to use) alters the probabilities of severe weather events. Results indicate that at any given point in the United States on any given day, more than 95% of the daily reports within 40 km of the point occur in a 4-h period. Therefore, the SPC 24-h convective outlook probabilities can be interpreted as 4-h convective outlook probabilities without a significant change in meaning. Additionally, probabilities and threat periods are analyzed at each location and different times of year. These results indicate little variability in the duration of severe weather events, which allows for a consistent definition of an “event” for all locations in the continental United States.
Abstract
One of the challenges of providing probabilistic information on a multitude of spatiotemporal scales is ensuring that information is both accurate and useful to decision-makers. Focusing on larger spatiotemporal scales (i.e., from convective outlook to weather watch scales), historical severe weather reports are analyzed to begin to understand the spatiotemporal scales that hazardous weather events are contained within. Reports from the Storm Prediction Center’s report archive are placed onto grids of differing spatial scales and then split into 24-h convective outlook days (1200–1200 UTC). These grids are then analyzed temporally to assess over what fraction of the day a single location would generally experience severe weather events. Different combinations of temporal and spatial scales are tested to determine how the reference class (or the choice of what scales to use) alters the probabilities of severe weather events. Results indicate that at any given point in the United States on any given day, more than 95% of the daily reports within 40 km of the point occur in a 4-h period. Therefore, the SPC 24-h convective outlook probabilities can be interpreted as 4-h convective outlook probabilities without a significant change in meaning. Additionally, probabilities and threat periods are analyzed at each location and different times of year. These results indicate little variability in the duration of severe weather events, which allows for a consistent definition of an “event” for all locations in the continental United States.
Abstract
A set of numerical simulations of supercell thunderstorms has been carried out with a range of low-level curvatures in the environmental hodograph and midlevel shears. They cover a range of hodograph “shape,” as measured by the integrated helicity of the lowest 3 km of the hodograph. The peak updraft occurs in the first hour of the storms and tends to be greater for larger values of environmental helicity. There is also a slight tendency for greater updraft intensity with lesser values of midlevel shear. Significantly, air in the core of the updrafts at midlevels (∼5 km) is not the most unstable air at the level. The most buoyant air rises in a region with a downward-directed pressure gradient force, which slows its ascent. Conversely, pressure gradient forces at lower levels (2–3 km) accelerate less buoyant air upward into the core of the midlevel updrafts. The pressure gradient force is larger in the cases with more curvature in the environmental wind than the low-curvature environments. This is consistent with predictions of the pressure gradient force derived from a simple Beltrami flow model of a rotating thunderstorm and a scale analysis.
Abstract
A set of numerical simulations of supercell thunderstorms has been carried out with a range of low-level curvatures in the environmental hodograph and midlevel shears. They cover a range of hodograph “shape,” as measured by the integrated helicity of the lowest 3 km of the hodograph. The peak updraft occurs in the first hour of the storms and tends to be greater for larger values of environmental helicity. There is also a slight tendency for greater updraft intensity with lesser values of midlevel shear. Significantly, air in the core of the updrafts at midlevels (∼5 km) is not the most unstable air at the level. The most buoyant air rises in a region with a downward-directed pressure gradient force, which slows its ascent. Conversely, pressure gradient forces at lower levels (2–3 km) accelerate less buoyant air upward into the core of the midlevel updrafts. The pressure gradient force is larger in the cases with more curvature in the environmental wind than the low-curvature environments. This is consistent with predictions of the pressure gradient force derived from a simple Beltrami flow model of a rotating thunderstorm and a scale analysis.
Abstract
The 3 May 1999 Oklahoma City tornado was the deadliest in the United States in over 20 years, with 36 direct fatalities. To understand how this event fits into the historical context, the record of tornado deaths in the United States has been examined. Almost 20 000 deaths have been reported associated with more than 3600 tornadoes in the United States since 1680. A cursory examination of the record shows a break in 1875. Prior to then, it is likely that many killer tornadoes failed to be reported. When the death toll is normalized by population, a near-constant rate of death is apparent until about 1925, when a sharp fall begins. The rate was about 1.8 people per million population in 1925 and was less than 0.12 people per million by 2000. The decrease in fatalities has resulted from two primary causes: a decrease in the number of killer tornadoes and a decrease in the number of fatalities in the most deadly tornadoes. Current death rates for mobile home residents, however, are still nearly what the overall national rate was prior to 1925 and are about 20 times the rate of site-built home residents. The increase in the fraction of the U.S. population living in mobile homes has important implications for future reductions in the death toll.
Abstract
The 3 May 1999 Oklahoma City tornado was the deadliest in the United States in over 20 years, with 36 direct fatalities. To understand how this event fits into the historical context, the record of tornado deaths in the United States has been examined. Almost 20 000 deaths have been reported associated with more than 3600 tornadoes in the United States since 1680. A cursory examination of the record shows a break in 1875. Prior to then, it is likely that many killer tornadoes failed to be reported. When the death toll is normalized by population, a near-constant rate of death is apparent until about 1925, when a sharp fall begins. The rate was about 1.8 people per million population in 1925 and was less than 0.12 people per million by 2000. The decrease in fatalities has resulted from two primary causes: a decrease in the number of killer tornadoes and a decrease in the number of fatalities in the most deadly tornadoes. Current death rates for mobile home residents, however, are still nearly what the overall national rate was prior to 1925 and are about 20 times the rate of site-built home residents. The increase in the fraction of the U.S. population living in mobile homes has important implications for future reductions in the death toll.
Abstract
The authors have carried out verification of 590 12–24-h high-temperature forecasts from numerical guidance products and human forecasters for Oklahoma City, Oklahoma, using both a measures-oriented verification scheme and a distributions-oriented scheme. The latter captures the richness associated with the relationship of forecasts and observations, providing insight into strengths and weaknesses of the forecasting systems, and showing areas in which improvement in accuracy can be obtained.
The analysis of this single forecast element at one lead time shows the amount of information available from a distributions-oriented verification scheme. In order to obtain a complete picture of the overall state of forecasting, it would be necessary to verify all elements at all lead times. The authors urge the development of such a national verification scheme as soon as possible, since without it, it will be impossible to monitor changes in the quality of forecasts and forecasting systems in the future.
Abstract
The authors have carried out verification of 590 12–24-h high-temperature forecasts from numerical guidance products and human forecasters for Oklahoma City, Oklahoma, using both a measures-oriented verification scheme and a distributions-oriented scheme. The latter captures the richness associated with the relationship of forecasts and observations, providing insight into strengths and weaknesses of the forecasting systems, and showing areas in which improvement in accuracy can be obtained.
The analysis of this single forecast element at one lead time shows the amount of information available from a distributions-oriented verification scheme. In order to obtain a complete picture of the overall state of forecasting, it would be necessary to verify all elements at all lead times. The authors urge the development of such a national verification scheme as soon as possible, since without it, it will be impossible to monitor changes in the quality of forecasts and forecasting systems in the future.
Abstract
The authors discuss the relationship between budget-cutting exercises and knowledge of the value of weather services. The complex interaction between quality (accuracy) and value of weather forecasts prevents theoretical approaches from contributing much to the discussion, except perhaps to indicate some of the sources for its complexity. The absence of comprehensive theoretical answers indicates the importance of empirical determinations of forecast value; as it stands, the United States is poorly equipped to make intelligent decisions in the current and future budget situations. To obtain credible empirical answers, forecasters will need to develop closer working relationships with their users than ever before, seeking specific information regarding economic value of forecasts. Some suggestions for developing plausible value estimates are offered, based largely on limited studies already in the literature. Efforts to create closer ties between forecasters and users can yield diverse benefits, including the desired credible estimates of the value of forecasts, as well as estimates of the sensitivity of that value to changes in accuracy of the forecasts. The authors argue for the development of an infrastructure to make these empirical value estimates, as a critical need within weather forecasting agencies, public and private, in view of continuing budget pressures.
Abstract
The authors discuss the relationship between budget-cutting exercises and knowledge of the value of weather services. The complex interaction between quality (accuracy) and value of weather forecasts prevents theoretical approaches from contributing much to the discussion, except perhaps to indicate some of the sources for its complexity. The absence of comprehensive theoretical answers indicates the importance of empirical determinations of forecast value; as it stands, the United States is poorly equipped to make intelligent decisions in the current and future budget situations. To obtain credible empirical answers, forecasters will need to develop closer working relationships with their users than ever before, seeking specific information regarding economic value of forecasts. Some suggestions for developing plausible value estimates are offered, based largely on limited studies already in the literature. Efforts to create closer ties between forecasters and users can yield diverse benefits, including the desired credible estimates of the value of forecasts, as well as estimates of the sensitivity of that value to changes in accuracy of the forecasts. The authors argue for the development of an infrastructure to make these empirical value estimates, as a critical need within weather forecasting agencies, public and private, in view of continuing budget pressures.