Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: Jacques Vanneste x
- Journal of Physical Oceanography x
- Refine by Access: All Content x
Abstract
A homogenization technique is used to study the change in the frequency of planetary Rossby waves that results from their interaction with a small-scale two-dimensional topography. The frequency change is computed explicitly for a topography consisting of a random distribution of well-separated cylindrical seamounts; it corresponds to a phase-speed increase (decrease) when the flat-bottom Rossby wave frequency is larger (smaller) than a typical topographic frequency. The topography is also shown to lead to a finite damping of the Rossby waves, even in the limit of infinitesimally small Ekman friction.
Abstract
A homogenization technique is used to study the change in the frequency of planetary Rossby waves that results from their interaction with a small-scale two-dimensional topography. The frequency change is computed explicitly for a topography consisting of a random distribution of well-separated cylindrical seamounts; it corresponds to a phase-speed increase (decrease) when the flat-bottom Rossby wave frequency is larger (smaller) than a typical topographic frequency. The topography is also shown to lead to a finite damping of the Rossby waves, even in the limit of infinitesimally small Ekman friction.
Abstract
Recent studies indicate that altimetric observations of the ocean’s mesoscale eddy field reflect the combined influence of surface buoyancy and interior potential vorticity anomalies. The former have a surface-trapped structure, while the latter are often well represented by the barotropic and first baroclinic modes. To assess the relative importance of each contribution to the signal, it is useful to project the observed field onto a set of modes that separates their influence in a natural way. However, the surface-trapped dynamics are not well represented by standard baroclinic modes; moreover, they are dependent on horizontal scale.
Here the authors derive a modal decomposition that results from the simultaneous diagonalization of the energy and a generalization of potential enstrophy that includes contributions from the surface buoyancy fields. This approach yields a family of orthonormal bases that depend on two parameters; the standard baroclinic modes are recovered in a limiting case, while other choices provide modes that represent surface and interior dynamics in an efficient way.
For constant stratification, these modes consist of symmetric and antisymmetric exponential modes that capture the surface dynamics and a series of oscillating modes that represent the interior dynamics. Motivated by the ocean, where shears are concentrated near the upper surface, the authors consider the special case of a quiescent lower surface. In this case, the interior modes are independent of wavenumber, and there is a single exponential surface mode that replaces the barotropic mode. The use and effectiveness of these modes is demonstrated by projecting the energy in a set of simulations of baroclinic turbulence.
Abstract
Recent studies indicate that altimetric observations of the ocean’s mesoscale eddy field reflect the combined influence of surface buoyancy and interior potential vorticity anomalies. The former have a surface-trapped structure, while the latter are often well represented by the barotropic and first baroclinic modes. To assess the relative importance of each contribution to the signal, it is useful to project the observed field onto a set of modes that separates their influence in a natural way. However, the surface-trapped dynamics are not well represented by standard baroclinic modes; moreover, they are dependent on horizontal scale.
Here the authors derive a modal decomposition that results from the simultaneous diagonalization of the energy and a generalization of potential enstrophy that includes contributions from the surface buoyancy fields. This approach yields a family of orthonormal bases that depend on two parameters; the standard baroclinic modes are recovered in a limiting case, while other choices provide modes that represent surface and interior dynamics in an efficient way.
For constant stratification, these modes consist of symmetric and antisymmetric exponential modes that capture the surface dynamics and a series of oscillating modes that represent the interior dynamics. Motivated by the ocean, where shears are concentrated near the upper surface, the authors consider the special case of a quiescent lower surface. In this case, the interior modes are independent of wavenumber, and there is a single exponential surface mode that replaces the barotropic mode. The use and effectiveness of these modes is demonstrated by projecting the energy in a set of simulations of baroclinic turbulence.
Abstract
Anticyclonic vortices focus and trap near-inertial waves so that near-inertial energy levels are elevated within the vortex core. Some aspects of this process, including the nonlinear modification of the vortex by the wave, are explained by the existence of trapped near-inertial eigenmodes. These vortex eigenmodes are easily excited by an initial wave with horizontal scale much larger than that of the vortex radius. We study this process using a wave-averaged model of near-inertial dynamics and compare its theoretical predictions with numerical solutions of the three-dimensional Boussinesq equations. In the linear approximation, the model predicts the eigenmode frequencies and spatial structures, and a near-inertial wave energy signature that is characterized by an approximately time-periodic, azimuthally invariant pattern. The wave-averaged model represents the nonlinear feedback of the waves on the vortex via a wave-induced contribution to the potential vorticity that is proportional to the Laplacian of the kinetic energy density of the waves. When this is taken into account, the modal frequency is predicted to increase linearly with the energy of the initial excitation. Both linear and nonlinear predictions agree convincingly with the Boussinesq results.
Abstract
Anticyclonic vortices focus and trap near-inertial waves so that near-inertial energy levels are elevated within the vortex core. Some aspects of this process, including the nonlinear modification of the vortex by the wave, are explained by the existence of trapped near-inertial eigenmodes. These vortex eigenmodes are easily excited by an initial wave with horizontal scale much larger than that of the vortex radius. We study this process using a wave-averaged model of near-inertial dynamics and compare its theoretical predictions with numerical solutions of the three-dimensional Boussinesq equations. In the linear approximation, the model predicts the eigenmode frequencies and spatial structures, and a near-inertial wave energy signature that is characterized by an approximately time-periodic, azimuthally invariant pattern. The wave-averaged model represents the nonlinear feedback of the waves on the vortex via a wave-induced contribution to the potential vorticity that is proportional to the Laplacian of the kinetic energy density of the waves. When this is taken into account, the modal frequency is predicted to increase linearly with the energy of the initial excitation. Both linear and nonlinear predictions agree convincingly with the Boussinesq results.