Search Results

You are looking at 1 - 10 of 54 items for

  • Author or Editor: Kevin Hamilton x
  • Refine by Access: All Content x
Clear All Modify Search
Kevin Hamilton

Abstract

The effects of the Southern Oscillation on the December-February mean circulation in the Northern Hemisphere stratosphere were investigated using 34 years of data. No evidence for a significant relation between the Southern Oscillation (SO) and the zonally averaged flow is found for any region poleward of 20°N. The effects of the tropical quasi-biennial oscillation (QBO) on the zonal mean flow are much stronger, and this complicates the detection of 50 effects. Some more suggestive results are evident when hemispheric maps of height anomalies at 50 or 30 mb are composited for the warm extremes of the 50. The present findings are broadly consistent with earlier suggestions that, on average, the Aleutian high is intensified during the warm extremes of the Southern Oscillation. Even using the 34 years of data now available, however, the statistical significance of this relationship cannot be demonstrated unequivocally. Once again the separation of SO effects from QBO influences in the limited data available is a serious problem.

Full access
Kevin Hamilton

Abstract

No abstract available

Full access
Kevin Hamilton

Abstract

The mean flow accelerations induced by solar tides in the Martian atmosphere have been calculated using separable tidal theory together with the thermal excitations of Leovy and Zurek (1979). The calculated accelerations are generally small in the dust-free Martian atmosphere, although they may be important in a small region near the surface. During global dust storms the tidally-induced mean flow accelerations are much larger and the tides probably play an important role in the general circulation.

Full access
Kevin Hamilton

Abstract

A zonal-mean climatology of the temperature, geostrophic zonal winds and the beat and momentum transports associated with the geostrophic winds has been constructed on the basis of almost four years of routine weekly analyses from the National Meteorological Center (NMC). The region considered extends from 10 to 85°N and from 100 to 0.4 mb. The complete set of tables describing this climatology is available in an NCAR technical report (Hamilton, 1982). In the present paper the rationale for using the NMC analyses is given and a few of the highlights of the results are displayed.

Full access
Kevin Hamilton

Abstract

A 21-year record of monthly mean determinations of the solar semidiurnal surface pressure oscillation [S 2(p) at Batavia (6.2°S) was analyzed to detect long-period variability. When the S 2(p) determination were resolved into components which peak at local midnight (and noon) and 0900 (and 2100) local solar time, considerable evidence was found for a quasi-biennial variation in the 0900 component (but not in the midnight component). It is shown that this is consistent with the expected response of S 2(p) to the familiar quasi-biennial oscillation of the tropical stratosphere.

Also apparent in the record is a very long term trend in S 2(p). It is suggested that this way be an indication of a similar trend in stratospheric ozone, and the possibility of using the surface pressure oscillation in monitoring long-term changes in atmospheric ozone is discussed.

Full access
Kevin Hamilton

Abstract

This paper reports on interannual variability of the Northern Hemisphere winter stratospheric circulation as simulated by the 40-level GFDL “SKYHI” general circulation model. A 31-year control simulation was performed using a climatological annual cycle of sea surface temperatures. The interannual variability of the stratospheric circulation in this model has some realistic features. In particular, the simulated variance of monthly mean, zonal-man temperature and wind in the. extratropical Northern Hemisphere agrees fairly well with observations. The day-to-day variability of the circulation also appears to be rather well simulated, with midwinter warmings of realistic intensity and suddenness appearing in the polar regions. The major deficiency is the absence of a realistic quasi-biennial oscillation (QBO) in the simulated winds in the tropical lower stratosphere. There is also an indication of long period (∼10 year) variability in the winter polar vortex. This appears not to be related to any obvious source of long-term memory in the atmosphere such as surface boundary conditions or the flow in the tropical stratosphere.

The model has also been run through a large number of boreal winter simulations with imposed perturbations. In one set of experiments the Pacific sea surface temperatures have been changed to these appropriate for strong El Niño or La Niña conditions. The model is found to reproduce the observed extratropical stratospheric response to El Niño conditions quite well. Interestingly, the results suggest that including the interannual variations in SST would not greatly enhance the simulated interannual variance of the extratropical stratosphere circulation.

Another set of integrations involved arbitrarily altering the mean flow in the tropical lower stratosphere to be appropriate for different extremes of the QBO. The effect of these modifications on the simulated zonal-mean circulation in the extratropical winter stratosphere is found to be quite modest relative to that seen in comparable observations. The model results do display a clear effect of the imposed tropical lower-stratospheric wind perturbations on the extratropical summer mesospheric circulation. This could reflect the influence of the mean flow variations on the gravity waves forced in the Tropics, propagating upward and poleward and ultimately breaking in the extratropical mesosphere. The model behavior in this regard may be related to reported observations of an extratropical mesospheric QBO.

The equilibration of the stratospheric water vapor field in the long SKYHI control integration is examined. The results suggest that the mean residence time for upper-stratospheric air in the model is about 4 years.

Full access
Kevin Hamilton

Abstract

Surface meteorological data at several stations over the period 1875–1936 are examined in relation to solar activity. In particular an attempt is made to we if these historical data can be reconciled with the sun-QBO-weather relationship recently found in modern (post-1950) data by van Loon and Labitzke (vLL). The basic problem in extending vLL's analysis to earlier periods is ignorance of the phase of the QBO. In the present study, vLL's computations are repeated for the historical data using several million possible sequences for the phase of the QBO. The results reveal problems in reproducing vLL's results in the earlier data. This indicates either that the QBO behaved differently in the past, or that vLL's results for a solar-weather relationship are not stable over the long term.

Full access
Kevin Hamilton

Abstract

A search was conducted for the principal lunar diurnal tide (O1) in an 18½ year time series of twice-daily digitized sea level pressure analyses covering the region 20–90°N. At 20, 25, 30 and possibly at 35°N there is evidence for a systematic variation of the zonal wavenumber one harmonic of the pressure as a function of the phase of the O1 tidal potential. This variation is clearly dominated by a westward traveling component (i.e., one that follows the tidal potential around the earth each day). The computed amplitudes are very small (less than 0.01 mb), and north of 35°N the random meteorological noise cbscures the O1 tidal oscillation to the point where it cannot be detected from analysis of the present data.

Full access
Kevin Hamilton

Abstract

The consequences of the hypothesis of Lindzen (1978) that latent heat release may be a significant excitation mechanism for the semidiurnal atmospheric tide are examined in some detail. Harmonic analysis of hourly rainfall data from 79 tropical stations shows that the semidiurnal variation of rainfall in the tropics is ∼1 mm day−1 and has a phase near 0300 LST, just as Lindzen's theory requires. Analysis of data at 85 midlatitude stations shows that the sermidiurnal rainfall oscillation there has its phase rather later (about 0600). The results of simple classical tidal theory calculations which indicate that the geographical distribution of the surface pressure response to latent heat forcing largely follows that of the forcing itself are presented. This result is then used to suggest a plausible explanation for the observed seasonal cycle of the semidiurnal pressure oscillation in midlatitudes. Further calculations show that the magnitude of the non-migrating components of the semidiurnal barometric oscillation produced by latent heat excitation is not likely to be unrealistically large. These calculations also suggest that Lindzen's hypothesis might be verified by observing the phase of the semidiurnal pressure oscillation in particularly and regions.

The rainfall observations also show a strong diurnal (24 h) component in the rainfall both in the tropics and in midiatitudes. The effects of latent heat release on the 24 h tide are briefly discussed.

Full access
Kevin Hamilton

The problem of formulating optimal-regulation strategies for commercial fisheries is complicated by the large interannual fluctuations often observed in the numbers and locations of various fish populations. Much of the interannual variance seen in particular cases can be attributed to the effects of environmental variability. The article reviews three examples of research showing that environmental variations can have important systematic effects on fish stocks. The three examples are all from North America and have been chosen to illustrate the biological significance of meteorological and oceanographic phenomena on a wide range of space and time scales.

Full access