Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: L. Ruby Leung x
  • Process-oriented Diagnostics in CMIP6 Models and Beyond x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Yumin Moon
,
Daehyun Kim
,
Allison A. Wing
,
Suzana J. Camargo
,
Ming Zhao
,
L. Ruby Leung
,
Malcolm J. Roberts
,
Dong-Hyun Cha
, and
Jihong Moon

Abstract

This study evaluates tropical cyclone (TC) rainfall structures in the CMIP6 HighResMIP global climate model (GCM) simulations against satellite rainfall retrievals. We specifically focus on TCs within the deep tropics (25°S–25°N). Analysis of TC rain rate composites indicates that in comparison to the satellite observations at the same intensity, many HighResMIP simulations tend to overproduce rain rates around TCs, in terms of both maximum rain rate magnitude and area-averaged rain rates. In addition, as model horizontal resolution increases, the magnitude of the peak rain rate appears to increase. However, the area-averaged rain rates decrease with increasing horizontal resolution, partly due to the TC eyewall being located closer to the TC center, thus occupying a smaller area and contributing less to the area-averaged rain rates. The effect of ocean coupling is to lower the TC rain rates, bringing them closer to the satellite observations, due to reduced horizontal moisture flux convergence and surface latent heat flux beneath TCs. Examination of horizontal rain rate distributions indicates that vertical wind shear–induced rainfall asymmetries in HighResMIP-simulated TCs are qualitatively consistent with the observations. In addition, a positive relationship is observed between the area-averaged inner-core rainfall and TC intensification likelihoods across the HighResMIP simulations, as GCM simulations producing stronger TCs more frequently have the greater rainfall close to the center, in agreement with previous theoretical and GCM simulation results.

Free access
L. Ruby Leung
,
William R. Boos
,
Jennifer L. Catto
,
Charlotte A. DeMott
,
Gill M. Martin
,
J. David Neelin
,
Travis A. O’Brien
,
Shaocheng Xie
,
Zhe Feng
,
Nicholas P. Klingaman
,
Yi-Hung Kuo
,
Robert W. Lee
,
Cristian Martinez-Villalobos
,
S. Vishnu
,
Matthew D. K. Priestley
,
Cheng Tao
, and
Yang Zhou

Abstract

Precipitation sustains life and supports human activities, making its prediction one of the most societally relevant challenges in weather and climate modeling. Limitations in modeling precipitation underscore the need for diagnostics and metrics to evaluate precipitation in simulations and predictions. While routine use of basic metrics is important for documenting model skill, more sophisticated diagnostics and metrics aimed at connecting model biases to their sources and revealing precipitation characteristics relevant to how model precipitation is used are critical for improving models and their uses. This paper illustrates examples of exploratory diagnostics and metrics including 1) spatiotemporal characteristics metrics such as diurnal variability, probability of extremes, duration of dry spells, spectral characteristics, and spatiotemporal coherence of precipitation; 2) process-oriented metrics based on the rainfall–moisture coupling and temperature–water vapor environments of precipitation; and 3) phenomena-based metrics focusing on precipitation associated with weather phenomena including low pressure systems, mesoscale convective systems, frontal systems, and atmospheric rivers. Together, these diagnostics and metrics delineate the multifaceted and multiscale nature of precipitation, its relations with the environments, and its generation mechanisms. The metrics are applied to historical simulations from phases 5 and 6 of the Coupled Model Intercomparison Project. Models exhibit diverse skill as measured by the suite of metrics, with very few models consistently ranked as top or bottom performers compared to other models in multiple metrics. Analysis of model skill across metrics and models suggests possible relationships among subsets of metrics, motivating the need for more systematic analysis to understand model biases for informing model development.

Open access