Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Lauriane Batté x
  • Hans-Ertel Centre: Interdisciplinary Research in Weather Forecasting and Climate Monitoring x
  • Refine by Access: All Content x
Clear All Modify Search
Judith Berner
,
Ulrich Achatz
,
Lauriane Batté
,
Lisa Bengtsson
,
Alvaro de la Cámara
,
Hannah M. Christensen
,
Matteo Colangeli
,
Danielle R. B. Coleman
,
Daan Crommelin
,
Stamen I. Dolaptchiev
,
Christian L. E. Franzke
,
Petra Friederichs
,
Peter Imkeller
,
Heikki Järvinen
,
Stephan Juricke
,
Vassili Kitsios
,
François Lott
,
Valerio Lucarini
,
Salil Mahajan
,
Timothy N. Palmer
,
Cécile Penland
,
Mirjana Sakradzija
,
Jin-Song von Storch
,
Antje Weisheimer
,
Michael Weniger
,
Paul D. Williams
, and
Jun-Ichi Yano

Abstract

The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans, land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined.

Full access