Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Manfred Wendisch x
- Journal of the Atmospheric Sciences x
- Refine by Access: All Content x
Abstract
Tethered balloon–borne measurements with a resolution in the order of 10 cm in a cloudy boundary layer are presented. Two examples sampled under different conditions concerning the clouds' stage of life are discussed. The hypothesis tested here is that basic ideas of classical turbulence theory in boundary layer clouds are valid even to the decimeter scale. Power spectral densities S( f ) of air temperature, liquid water content, and wind velocity components show an inertial subrange behavior down to ≈20 cm. The mean energy dissipation rates
Abstract
Tethered balloon–borne measurements with a resolution in the order of 10 cm in a cloudy boundary layer are presented. Two examples sampled under different conditions concerning the clouds' stage of life are discussed. The hypothesis tested here is that basic ideas of classical turbulence theory in boundary layer clouds are valid even to the decimeter scale. Power spectral densities S( f ) of air temperature, liquid water content, and wind velocity components show an inertial subrange behavior down to ≈20 cm. The mean energy dissipation rates
Abstract
A novel approach to compare airborne observations of solar spectral irradiances measured above clouds with along-track radiative transfer simulations (RTS) is presented. The irradiance measurements were obtained with the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the High Altitude and Long Range Research Aircraft (HALO). The RTS were conducted using the operational ecRad radiation scheme of the Integrated Forecast System (IFS), operated by the European Centre for Medium-Range Weather Forecasts (ECMWF), and a stand-alone radiative transfer solver, the library for Radiative transfer (libRadtran). Profiles of observed and simulated radar reflectivity were provided by the HALO Microwave Package (HAMP) and the Passive and Active Microwave Transfer Model (PAMTRA), respectively. The comparison aims to investigate the capability of the two models to reproduce the observed radiation field. By analyzing spectral irradiances above clouds, different ice cloud optical parameterizations in the models were evaluated. Simulated and observed radar reflectivity fields allowed the vertical representation of the clouds modeled by the IFS to be evaluated, and enabled errors in the IFS analysis data (IFS AD) and the observations to be separated. The investigation of a North Atlantic low pressure system showed that the RTS, in combination with the IFS AD, generally reproduced the observed radiation field. For heterogeneously distributed liquid water clouds, an underestimation of upward irradiance by up to 27% was found. Simulations of ice-topped clouds, using a specific ice optics parameterization, indicated a systematic underestimation of broadband cloud-top albedo, suggesting major deficiencies in the ice optics parameterization between 1242 and 1941 nm wavelength.
Abstract
A novel approach to compare airborne observations of solar spectral irradiances measured above clouds with along-track radiative transfer simulations (RTS) is presented. The irradiance measurements were obtained with the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the High Altitude and Long Range Research Aircraft (HALO). The RTS were conducted using the operational ecRad radiation scheme of the Integrated Forecast System (IFS), operated by the European Centre for Medium-Range Weather Forecasts (ECMWF), and a stand-alone radiative transfer solver, the library for Radiative transfer (libRadtran). Profiles of observed and simulated radar reflectivity were provided by the HALO Microwave Package (HAMP) and the Passive and Active Microwave Transfer Model (PAMTRA), respectively. The comparison aims to investigate the capability of the two models to reproduce the observed radiation field. By analyzing spectral irradiances above clouds, different ice cloud optical parameterizations in the models were evaluated. Simulated and observed radar reflectivity fields allowed the vertical representation of the clouds modeled by the IFS to be evaluated, and enabled errors in the IFS analysis data (IFS AD) and the observations to be separated. The investigation of a North Atlantic low pressure system showed that the RTS, in combination with the IFS AD, generally reproduced the observed radiation field. For heterogeneously distributed liquid water clouds, an underestimation of upward irradiance by up to 27% was found. Simulations of ice-topped clouds, using a specific ice optics parameterization, indicated a systematic underestimation of broadband cloud-top albedo, suggesting major deficiencies in the ice optics parameterization between 1242 and 1941 nm wavelength.
Abstract
Boundary layer cloud transformations at high latitudes play a key role for the Arctic climate and are partially controlled by large-scale dynamics such as subsidence. While measuring large- and mesoscale divergence on spatial scales on the order of 100 km has proven notoriously difficult, recent airborne campaigns in the subtropics have successfully applied measurement techniques using multiple dropsonde releases in circular flight patterns. In this paper it is shown that this method can also be effectively applied at high latitudes, in spite of the considerable differences in atmospheric dynamics compared to the subtropics. To show the applicability, data collected during the airborne HALO-(AC)3 field campaign near Svalbard in Spring 2022 were analysed, where several flight patterns involving multiple dropsonde launches were realized by two aircraft. This study presents a first overview of the results. We find that the method indeed yields reliable estimates of mesoscale gradients in the Arctic, producing robust vertical profiles of horizontal divergence and consequently, subsidence. Sensitivity to aspects of the method is investigated, including dependence on sampling area and the divergence calculation.
Abstract
Boundary layer cloud transformations at high latitudes play a key role for the Arctic climate and are partially controlled by large-scale dynamics such as subsidence. While measuring large- and mesoscale divergence on spatial scales on the order of 100 km has proven notoriously difficult, recent airborne campaigns in the subtropics have successfully applied measurement techniques using multiple dropsonde releases in circular flight patterns. In this paper it is shown that this method can also be effectively applied at high latitudes, in spite of the considerable differences in atmospheric dynamics compared to the subtropics. To show the applicability, data collected during the airborne HALO-(AC)3 field campaign near Svalbard in Spring 2022 were analysed, where several flight patterns involving multiple dropsonde launches were realized by two aircraft. This study presents a first overview of the results. We find that the method indeed yields reliable estimates of mesoscale gradients in the Arctic, producing robust vertical profiles of horizontal divergence and consequently, subsidence. Sensitivity to aspects of the method is investigated, including dependence on sampling area and the divergence calculation.