Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Marlene Kretschmer x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
Abstract
The extratropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, confining the coldest temperatures at high latitudes. The jet, referred to as the stratospheric polar vortex, is predominantly zonal and centered around the pole; however, it does exhibit large variability in wind speed and location. Previous studies showed that a weak stratospheric polar vortex can lead to cold-air outbreaks in the midlatitudes, but the exact relationships and mechanisms are unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in midlatitude Eurasia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid- to late winter (January and February) has increased, which was accompanied by subsequent cold extremes in midlatitude Eurasia. For this region, 60% of the observed cooling in the era of Arctic amplification, that is, since 1990, can be explained by the increased frequency of weak stratospheric polar vortex states, a number that increases to almost 80% when El Niño–Southern Oscillation (ENSO) variability is included as well.
Abstract
The extratropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, confining the coldest temperatures at high latitudes. The jet, referred to as the stratospheric polar vortex, is predominantly zonal and centered around the pole; however, it does exhibit large variability in wind speed and location. Previous studies showed that a weak stratospheric polar vortex can lead to cold-air outbreaks in the midlatitudes, but the exact relationships and mechanisms are unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in midlatitude Eurasia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid- to late winter (January and February) has increased, which was accompanied by subsequent cold extremes in midlatitude Eurasia. For this region, 60% of the observed cooling in the era of Arctic amplification, that is, since 1990, can be explained by the increased frequency of weak stratospheric polar vortex states, a number that increases to almost 80% when El Niño–Southern Oscillation (ENSO) variability is included as well.
Abstract
Teleconnections are sources of predictability for regional weather and climate, but the relative contributions of different teleconnections to regional anomalies are usually not understood. While physical knowledge about the involved mechanisms is often available, how to quantify a particular causal pathway from data are usually unclear. Here, we argue for adopting a causal inference-based framework in the statistical analysis of teleconnections to overcome this challenge. A causal approach requires explicitly including expert knowledge in the statistical analysis, which allows one to draw quantitative conclusions. We illustrate some of the key concepts of this theory with concrete examples of well-known atmospheric teleconnections. We further discuss the particular challenges and advantages these imply for climate science and argue that a systematic causal approach to statistical inference should become standard practice in the study of teleconnections.
Abstract
Teleconnections are sources of predictability for regional weather and climate, but the relative contributions of different teleconnections to regional anomalies are usually not understood. While physical knowledge about the involved mechanisms is often available, how to quantify a particular causal pathway from data are usually unclear. Here, we argue for adopting a causal inference-based framework in the statistical analysis of teleconnections to overcome this challenge. A causal approach requires explicitly including expert knowledge in the statistical analysis, which allows one to draw quantitative conclusions. We illustrate some of the key concepts of this theory with concrete examples of well-known atmospheric teleconnections. We further discuss the particular challenges and advantages these imply for climate science and argue that a systematic causal approach to statistical inference should become standard practice in the study of teleconnections.