Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Roy L. Jenne x
- Monthly Weather Review x
- Refine by Access: All Content x
Abstract
We have tested three methods of estimating the level of a coming season's mean temperature at a station where the statistical association between two selected seasons is as high as one can expect in extratropical regions. The methods are contingency tables, regression equations, and the use of the last few decades if there is a trend at the station which will separate the mean of these decades a fair distance from the long-term mean. A moderate amount of skill was achieved, but the degree of seasonal association in our test case was exceptionally high, and generally these methods will provide only a small improvement over a probability based on knowing only the observed frequency distribution.
Abstract
We have tested three methods of estimating the level of a coming season's mean temperature at a station where the statistical association between two selected seasons is as high as one can expect in extratropical regions. The methods are contingency tables, regression equations, and the use of the last few decades if there is a trend at the station which will separate the mean of these decades a fair distance from the long-term mean. A moderate amount of skill was achieved, but the degree of seasonal association in our test case was exceptionally high, and generally these methods will provide only a small improvement over a probability based on knowing only the observed frequency distribution.
Abstract
This note deals with the standard deviations of 24-hr changes in 10-mb temperatures and heights. The standard deviations are differently distributed in disturbed and in quiet winter months. In the disturbed months their largest values form a coherent area at high latitudes; in the quiet months they surround the polar region as a ring with its center on the Atlantic side.
Abstract
This note deals with the standard deviations of 24-hr changes in 10-mb temperatures and heights. The standard deviations are differently distributed in disturbed and in quiet winter months. In the disturbed months their largest values form a coherent area at high latitudes; in the quiet months they surround the polar region as a ring with its center on the Atlantic side.
Abstract
Two patterns dominate changes of monthly mean temperature and pressure-height in the stratosphere. In the one, the middle latitudes vary oppositely to low and high latitudes, and in the other the changes at higher latitudes are out of phase with those at lower latitudes.
A shorter trend consisting of opposite changes at middle and high latitudes is superposed on the above variations which a cross-spectrum analysis shows has a preferred time scale of one to three weeks. The contrast between middle and high latitudes thus undergoes a series of corresponding fluctuations and we show that these are associated with amplitude changes in waves 1 and 2 in that the meridional contrast decreases when the amplitude of one or both waves is large, and vice versa.
Abstract
Two patterns dominate changes of monthly mean temperature and pressure-height in the stratosphere. In the one, the middle latitudes vary oppositely to low and high latitudes, and in the other the changes at higher latitudes are out of phase with those at lower latitudes.
A shorter trend consisting of opposite changes at middle and high latitudes is superposed on the above variations which a cross-spectrum analysis shows has a preferred time scale of one to three weeks. The contrast between middle and high latitudes thus undergoes a series of corresponding fluctuations and we show that these are associated with amplitude changes in waves 1 and 2 in that the meridional contrast decreases when the amplitude of one or both waves is large, and vice versa.