Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: Stephen Steenrod x
- Refine by Access: All Content x
Abstract
Stratospheric ozone is affected by external factors such as chlorofluorcarbons (CFCs), volcanoes, and the 11-yr solar cycle variation of ultraviolet radiation. Dynamical variability due to the quasi-biennial oscillation and other factors also contribute to stratospheric ozone variability. A research focus during the past two decades has been to quantify the downward trend in ozone due to the increase in industrially produced CFCs. During the coming decades research will focus on detection and attribution of the expected recovery of ozone as the CFCs are slowly removed from the atmosphere. A chemical transport model (CTM) has been used to simulate stratospheric composition for the past 30 yr and the next 20 yr using 50 yr of winds and temperatures from a general circulation model (GCM). The simulation includes the solar cycle in ultraviolet radiation, a representation of aerosol surface areas based on observations including volcanic perturbations from El Chichon in 1982 and Pinatubo in 1991, and time-dependent mixing ratio boundary conditions for CFCs, halons, and other source gases such as N2O and CH4. A second CTM simulation was carried out for identical solar flux and boundary conditions but with constant “background” aerosol conditions. The GCM integration included an online ozonelike tracer with specified production and loss that was used to evaluate the effects of interannual variability in dynamics. Statistical time series analysis was applied to both observed and simulated ozone to examine the capability of the analyses for the determination of trends in ozone due to CFCs and to separate these trends from the solar cycle and volcanic effects in the atmosphere. The results point out several difficulties associated with the interpretation of time series analyses of atmospheric ozone data. In particular, it is shown that lengthening the dataset reduces the uncertainty in derived trend due to interannual dynamic variability. It is further shown that interannual variability can make it difficult to accurately assess the impact of a volcanic eruption, such as Pinatubo, on ozone. Such uncertainties make it difficult to obtain an early proof of ozone recovery in response to decreasing chlorine.
Abstract
Stratospheric ozone is affected by external factors such as chlorofluorcarbons (CFCs), volcanoes, and the 11-yr solar cycle variation of ultraviolet radiation. Dynamical variability due to the quasi-biennial oscillation and other factors also contribute to stratospheric ozone variability. A research focus during the past two decades has been to quantify the downward trend in ozone due to the increase in industrially produced CFCs. During the coming decades research will focus on detection and attribution of the expected recovery of ozone as the CFCs are slowly removed from the atmosphere. A chemical transport model (CTM) has been used to simulate stratospheric composition for the past 30 yr and the next 20 yr using 50 yr of winds and temperatures from a general circulation model (GCM). The simulation includes the solar cycle in ultraviolet radiation, a representation of aerosol surface areas based on observations including volcanic perturbations from El Chichon in 1982 and Pinatubo in 1991, and time-dependent mixing ratio boundary conditions for CFCs, halons, and other source gases such as N2O and CH4. A second CTM simulation was carried out for identical solar flux and boundary conditions but with constant “background” aerosol conditions. The GCM integration included an online ozonelike tracer with specified production and loss that was used to evaluate the effects of interannual variability in dynamics. Statistical time series analysis was applied to both observed and simulated ozone to examine the capability of the analyses for the determination of trends in ozone due to CFCs and to separate these trends from the solar cycle and volcanic effects in the atmosphere. The results point out several difficulties associated with the interpretation of time series analyses of atmospheric ozone data. In particular, it is shown that lengthening the dataset reduces the uncertainty in derived trend due to interannual dynamic variability. It is further shown that interannual variability can make it difficult to accurately assess the impact of a volcanic eruption, such as Pinatubo, on ozone. Such uncertainties make it difficult to obtain an early proof of ozone recovery in response to decreasing chlorine.
Abstract
The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here, the authors present an analysis of the transit-time distribution (TTD) since air last contacted the NH midlatitude surface, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. Throughout the troposphere, the TTD is characterized by young modes and long tails. This results in mean transit times or “mean ages” Γ that are significantly larger than their corresponding modal transit times or “modal ages” τ mode, especially in the NH, where Γ ≈ 0.5 yr, while τ mode < 20 days. In addition, the shape of the TTD changes throughout the troposphere as the ratio of the spectral width Δ—the second temporal moment of the TTD—to the mean age decreases sharply in the NH from ~2.5 at NH high latitudes to ~0.7 in the Southern Hemisphere (SH). Decreases in Δ/Γ in the SH reflect a narrowing of the TTD relative to its mean and physically correspond to changes in the contributions of fast transport paths relative to slow eddy-diffusive recirculations. It is shown that fast transport paths control the patterns and seasonal cycles of idealized 5- and 50-day loss tracers in the Arctic and the tropics, respectively. The relationship between different TTD time scales and the idealized loss tracers, therefore, is conditional on the shape of the TTD.
Abstract
The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here, the authors present an analysis of the transit-time distribution (TTD) since air last contacted the NH midlatitude surface, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. Throughout the troposphere, the TTD is characterized by young modes and long tails. This results in mean transit times or “mean ages” Γ that are significantly larger than their corresponding modal transit times or “modal ages” τ mode, especially in the NH, where Γ ≈ 0.5 yr, while τ mode < 20 days. In addition, the shape of the TTD changes throughout the troposphere as the ratio of the spectral width Δ—the second temporal moment of the TTD—to the mean age decreases sharply in the NH from ~2.5 at NH high latitudes to ~0.7 in the Southern Hemisphere (SH). Decreases in Δ/Γ in the SH reflect a narrowing of the TTD relative to its mean and physically correspond to changes in the contributions of fast transport paths relative to slow eddy-diffusive recirculations. It is shown that fast transport paths control the patterns and seasonal cycles of idealized 5- and 50-day loss tracers in the Arctic and the tropics, respectively. The relationship between different TTD time scales and the idealized loss tracers, therefore, is conditional on the shape of the TTD.
Abstract
Using a stratospheric-tropospheric data assimilation system, referred to as STRATAN, a minor sudden stratospheric warming that occurred in January 1989 is investigated. The event had a maximum influence on the stratospheric circulation near 2 hPa. The zonal mean circulation reversed briefly in the polar region as the temperature increased 34 K in 3 days. The cause of the warming is shown to be the rapid development and subsequent movement of a warm anomaly, which initially developed in the midlatitudes. The development of the warm anomaly is caused by adiabatic descent, and the dissipation by radiative cooling. A brief comparison with the NMC analysis and temperature sounding data is also presented.
Abstract
Using a stratospheric-tropospheric data assimilation system, referred to as STRATAN, a minor sudden stratospheric warming that occurred in January 1989 is investigated. The event had a maximum influence on the stratospheric circulation near 2 hPa. The zonal mean circulation reversed briefly in the polar region as the temperature increased 34 K in 3 days. The cause of the warming is shown to be the rapid development and subsequent movement of a warm anomaly, which initially developed in the midlatitudes. The development of the warm anomaly is caused by adiabatic descent, and the dissipation by radiative cooling. A brief comparison with the NMC analysis and temperature sounding data is also presented.
Abstract
A three-dimensional simulation of the evolution of HNO3 has been run for the winter of 1979. Winds and temperatures are taken from a stratospheric data assimilation analysis, and the chemistry is based on Limb Infrared Monitor of the Stratosphere (LIMS) observations. The model is compared to LIMS observations to investigate the problem of “missing” nitric acid chemistry in the winter hemisphere. Both the model and observations support the contention that a nitric acid source is needed outside of the polar vortex and north of the subtropics.
Observations show that nitric acid and potential vorticity are uncorrelated in middle latitudes outside the polar vortex. This suggests that HNO3 is not dynamically controlled in middle latitudes. The model shows that given the time scales of conventional chemistry, dynamical control is expected. Therefore, an error exists in the conventional chemistry or additional processes are needed to bring the model and data into agreement. Since the polar vortex is dynamically isolated from the middle latitudes, and since the highest HNO3 values are observed in October and November, a source associated solely with polar stratospheric clouds cannot explain the deficiencies in the chemistry. The role of heterogeneous processes on background aerosols is reviewed in light of these results.
Abstract
A three-dimensional simulation of the evolution of HNO3 has been run for the winter of 1979. Winds and temperatures are taken from a stratospheric data assimilation analysis, and the chemistry is based on Limb Infrared Monitor of the Stratosphere (LIMS) observations. The model is compared to LIMS observations to investigate the problem of “missing” nitric acid chemistry in the winter hemisphere. Both the model and observations support the contention that a nitric acid source is needed outside of the polar vortex and north of the subtropics.
Observations show that nitric acid and potential vorticity are uncorrelated in middle latitudes outside the polar vortex. This suggests that HNO3 is not dynamically controlled in middle latitudes. The model shows that given the time scales of conventional chemistry, dynamical control is expected. Therefore, an error exists in the conventional chemistry or additional processes are needed to bring the model and data into agreement. Since the polar vortex is dynamically isolated from the middle latitudes, and since the highest HNO3 values are observed in October and November, a source associated solely with polar stratospheric clouds cannot explain the deficiencies in the chemistry. The role of heterogeneous processes on background aerosols is reviewed in light of these results.
Abstract
This article provides an overview of the NASA Atmospheric Tomography (ATom) mission and a summary of selected scientific findings to date. ATom was an airborne measurements and modeling campaign aimed at characterizing the composition and chemistry of the troposphere over the most remote regions of the Pacific, Southern, Atlantic, and Arctic Oceans, and examining the impact of anthropogenic and natural emissions on a global scale. These remote regions dominate global chemical reactivity and are exceptionally important for global air quality and climate. ATom data provide the in situ measurements needed to understand the range of chemical species and their reactions, and to test satellite remote sensing observations and global models over large regions of the remote atmosphere. Lack of data in these regions, particularly over the oceans, has limited our understanding of how atmospheric composition is changing in response to shifting anthropogenic emissions and physical climate change. ATom was designed as a global-scale tomographic sampling mission with extensive geographic and seasonal coverage, tropospheric vertical profiling, and detailed speciation of reactive compounds and pollution tracers. ATom flew the NASA DC-8 research aircraft over four seasons to collect a comprehensive suite of measurements of gases, aerosols, and radical species from the remote troposphere and lower stratosphere on four global circuits from 2016 to 2018. Flights maintained near-continuous vertical profiling of 0.15–13-km altitudes on long meridional transects of the Pacific and Atlantic Ocean basins. Analysis and modeling of ATom data have led to the significant early findings highlighted here.
Abstract
This article provides an overview of the NASA Atmospheric Tomography (ATom) mission and a summary of selected scientific findings to date. ATom was an airborne measurements and modeling campaign aimed at characterizing the composition and chemistry of the troposphere over the most remote regions of the Pacific, Southern, Atlantic, and Arctic Oceans, and examining the impact of anthropogenic and natural emissions on a global scale. These remote regions dominate global chemical reactivity and are exceptionally important for global air quality and climate. ATom data provide the in situ measurements needed to understand the range of chemical species and their reactions, and to test satellite remote sensing observations and global models over large regions of the remote atmosphere. Lack of data in these regions, particularly over the oceans, has limited our understanding of how atmospheric composition is changing in response to shifting anthropogenic emissions and physical climate change. ATom was designed as a global-scale tomographic sampling mission with extensive geographic and seasonal coverage, tropospheric vertical profiling, and detailed speciation of reactive compounds and pollution tracers. ATom flew the NASA DC-8 research aircraft over four seasons to collect a comprehensive suite of measurements of gases, aerosols, and radical species from the remote troposphere and lower stratosphere on four global circuits from 2016 to 2018. Flights maintained near-continuous vertical profiling of 0.15–13-km altitudes on long meridional transects of the Pacific and Atlantic Ocean basins. Analysis and modeling of ATom data have led to the significant early findings highlighted here.