Search Results
You are looking at 1 - 10 of 16 items for
- Author or Editor: W. J. Randel x
- Refine by Access: All Content x
Abstract
Studies using, climatological fields in a three-dimensional stability model show unstable modes near the polar winter stratopause with periods neat 4 days. The calculated modes exhibit equatorward momentum and heat fluxes near the stratopause, similar to characteristics of observed 4-day wave events, demonstrating that both baroclinic and barotropic processes are important for this instability. The baroclinic and baratropic components are considered separately by selectively removing either horizontal or vertical shear from the background flow. Although both situations reveal instability, growth rates are very slow; realistic growth rates occur only for climatological flows including both horizontal and vertical shears. Similar unstable, fast-moving waves are found near the polar stratopause for several winter months in both hemispheres.
Abstract
Studies using, climatological fields in a three-dimensional stability model show unstable modes near the polar winter stratopause with periods neat 4 days. The calculated modes exhibit equatorward momentum and heat fluxes near the stratopause, similar to characteristics of observed 4-day wave events, demonstrating that both baroclinic and barotropic processes are important for this instability. The baroclinic and baratropic components are considered separately by selectively removing either horizontal or vertical shear from the background flow. Although both situations reveal instability, growth rates are very slow; realistic growth rates occur only for climatological flows including both horizontal and vertical shears. Similar unstable, fast-moving waves are found near the polar stratopause for several winter months in both hemispheres.
Abstract
The climatological structure, and interannual variability, of the Arctic and Antarctic stratospheric polar vortices are examined by analysis of elliptical diagnostics applied to over 19 yr of potential vorticity data. The elliptical diagnostics define the area, center, elongation, and orientation of each vortex and are used to quantify their structure and evolution. The diagnostics offer a novel view of the well-known differences in the climatological structure of the polar vortices. Although both vortices form in autumn to early winter, the Arctic vortex has a shorter life span and breaks down over a month before the Antarctic vortex. There are substantial differences in the distortion of the vortices from zonal symmetry; the Arctic vortex is displaced farther off the pole and is more elongated than the Antarctic vortex. While there is a midwinter minimum in the distortion of the Antarctic vortex, the distortion of the Arctic vortex increases during its life cycle. There are also large differences in the interannual variability of the vortices: the variability of the Antarctic vortex is small except during the spring vortex breakdown, whereas the Arctic vortex is highly variable throughout its life cycle, particularly in late winter. The diagnostics also reveal features not apparent in previous studies. There are periods when there are large zonal shifts (westward then eastward) in the climatological locations of the vortices: early winter for the Arctic vortex, and late winter to spring for the Antarctic vortex. Also, there are two preferred longitudes of the center of the lower-stratospheric Arctic vortex in early winter, and the vortex may move rapidly from one to the other. In the middle and upper stratosphere large displacements off the pole and large elongation of the vortex are both associated with a small vortex area, but there is very little correlation between displacement off the pole and elongation of the vortex.
Abstract
The climatological structure, and interannual variability, of the Arctic and Antarctic stratospheric polar vortices are examined by analysis of elliptical diagnostics applied to over 19 yr of potential vorticity data. The elliptical diagnostics define the area, center, elongation, and orientation of each vortex and are used to quantify their structure and evolution. The diagnostics offer a novel view of the well-known differences in the climatological structure of the polar vortices. Although both vortices form in autumn to early winter, the Arctic vortex has a shorter life span and breaks down over a month before the Antarctic vortex. There are substantial differences in the distortion of the vortices from zonal symmetry; the Arctic vortex is displaced farther off the pole and is more elongated than the Antarctic vortex. While there is a midwinter minimum in the distortion of the Antarctic vortex, the distortion of the Arctic vortex increases during its life cycle. There are also large differences in the interannual variability of the vortices: the variability of the Antarctic vortex is small except during the spring vortex breakdown, whereas the Arctic vortex is highly variable throughout its life cycle, particularly in late winter. The diagnostics also reveal features not apparent in previous studies. There are periods when there are large zonal shifts (westward then eastward) in the climatological locations of the vortices: early winter for the Arctic vortex, and late winter to spring for the Antarctic vortex. Also, there are two preferred longitudes of the center of the lower-stratospheric Arctic vortex in early winter, and the vortex may move rapidly from one to the other. In the middle and upper stratosphere large displacements off the pole and large elongation of the vortex are both associated with a small vortex area, but there is very little correlation between displacement off the pole and elongation of the vortex.
Abstract
The interannual variability of the tropical tropopause region between 14 and 18 km is examined using observations of convection, winds, and tropopause temperatures from reanalyses and water vapor from satellites. This variability is compared to a simulation using the Community Climate Model version 3 (CCM3) general circulation model forced by observed sea surface temperatures. A coherent picture of the effect of the El Niño–Southern Oscillation (ENSO) on the tropopause region is presented in the NCEP–NCAR reanalyses and CCM3. ENSO modifies convection in the Tropics, and the temperature and circulation of the tropical tropopause region, in agreement with idealized models of tropical heating. CCM3 reproduces most details of these changes, but not the zonal mean temperature variations present in the analysis fields, which are not related to ENSO. ENSO also forces significant changes in observed and simulated water vapor fields. In the upper troposphere water vapor is at maximum near convection, while in the tropopause region water vapor is at minimum in the regions of convection and surrounding it. Convection, cirrus clouds, temperatures, and transport are all linked to describe the water vapor distribution and highlight the role of transport in the tropopause region.
Abstract
The interannual variability of the tropical tropopause region between 14 and 18 km is examined using observations of convection, winds, and tropopause temperatures from reanalyses and water vapor from satellites. This variability is compared to a simulation using the Community Climate Model version 3 (CCM3) general circulation model forced by observed sea surface temperatures. A coherent picture of the effect of the El Niño–Southern Oscillation (ENSO) on the tropopause region is presented in the NCEP–NCAR reanalyses and CCM3. ENSO modifies convection in the Tropics, and the temperature and circulation of the tropical tropopause region, in agreement with idealized models of tropical heating. CCM3 reproduces most details of these changes, but not the zonal mean temperature variations present in the analysis fields, which are not related to ENSO. ENSO also forces significant changes in observed and simulated water vapor fields. In the upper troposphere water vapor is at maximum near convection, while in the tropopause region water vapor is at minimum in the regions of convection and surrounding it. Convection, cirrus clouds, temperatures, and transport are all linked to describe the water vapor distribution and highlight the role of transport in the tropopause region.
Abstract
Measurements of stratospheric methane (CH4) and water vapor (H2O) are used to investigate seasonal and interannual variability in stratospheric transport. Data are from the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) spanning 1991–97. Profile measurements are binned according to analyzed potential vorticity fields (equivalent latitude mapping), and seasonal cycles are fit using harmonic regression analysis. Methane data from the UARS Cryogenic Limb Array Etalon Spectrometer and water vapor from the Microwave Limb Sounder are also used to fill in winter polar latitudes (where HALOE measurements are unavailable), yielding complete global seasonal cycles. These data reveal well-known seasonal variations with novel detail, including 1) the presence of enhanced latitudinal gradients (mixing barriers) in the subtropics and across the polar vortices, 2) strong descent inside the polar vortices during winter and spring, and 3) vigorous seasonality in the tropical upper stratosphere, related to seasonal upwelling and the semiannual oscillation. The observed variations are in agreement with aspects of the mean meridional circulation derived from stratospheric meteorological analyses. Interannual variations are also investigated, and a majority of the variance is found to be coherent with the equatorial quasibiennial oscillation (QBO). Strong QBO influence is found in the tropical upper stratosphere: the double-peaked “rabbit ears” structure occurs primarily during QBO westerlies. The QBO also modulates the latitudinal position of the tropical “reservoir” in the middle stratosphere.
Abstract
Measurements of stratospheric methane (CH4) and water vapor (H2O) are used to investigate seasonal and interannual variability in stratospheric transport. Data are from the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) spanning 1991–97. Profile measurements are binned according to analyzed potential vorticity fields (equivalent latitude mapping), and seasonal cycles are fit using harmonic regression analysis. Methane data from the UARS Cryogenic Limb Array Etalon Spectrometer and water vapor from the Microwave Limb Sounder are also used to fill in winter polar latitudes (where HALOE measurements are unavailable), yielding complete global seasonal cycles. These data reveal well-known seasonal variations with novel detail, including 1) the presence of enhanced latitudinal gradients (mixing barriers) in the subtropics and across the polar vortices, 2) strong descent inside the polar vortices during winter and spring, and 3) vigorous seasonality in the tropical upper stratosphere, related to seasonal upwelling and the semiannual oscillation. The observed variations are in agreement with aspects of the mean meridional circulation derived from stratospheric meteorological analyses. Interannual variations are also investigated, and a majority of the variance is found to be coherent with the equatorial quasibiennial oscillation (QBO). Strong QBO influence is found in the tropical upper stratosphere: the double-peaked “rabbit ears” structure occurs primarily during QBO westerlies. The QBO also modulates the latitudinal position of the tropical “reservoir” in the middle stratosphere.
Abstract
The Brewer–Dobson circulation strengthens in the lowermost tropical stratosphere during warm El Niño–Southern Oscillation (ENSO) events. Dynamical analyses using the most recent version of the Whole Atmosphere Community Climate Model show that this is due mainly to anomalous forcing by orographic gravity waves, which maximizes in the Northern Hemisphere subtropics between 18 and 22 km, especially during the strongest warm ENSO episodes. Anomalies in the meridional gradient of temperature in the upper troposphere and lower stratosphere (UTLS) are produced during warm ENSO events, accompanied by anomalies in the location and intensity of the subtropical jets. This anomalous wind pattern alters the propagation and dissipation of the parameterized gravity waves, which ultimately force increases in tropical upwelling in the lowermost stratosphere. During cold ENSO events a similar signal, but of opposite sign, is present in the model simulations. The signals in ozone and water vapor produced by ENSO events in the UTLS are also investigated.
Abstract
The Brewer–Dobson circulation strengthens in the lowermost tropical stratosphere during warm El Niño–Southern Oscillation (ENSO) events. Dynamical analyses using the most recent version of the Whole Atmosphere Community Climate Model show that this is due mainly to anomalous forcing by orographic gravity waves, which maximizes in the Northern Hemisphere subtropics between 18 and 22 km, especially during the strongest warm ENSO episodes. Anomalies in the meridional gradient of temperature in the upper troposphere and lower stratosphere (UTLS) are produced during warm ENSO events, accompanied by anomalies in the location and intensity of the subtropical jets. This anomalous wind pattern alters the propagation and dissipation of the parameterized gravity waves, which ultimately force increases in tropical upwelling in the lowermost stratosphere. During cold ENSO events a similar signal, but of opposite sign, is present in the model simulations. The signals in ozone and water vapor produced by ENSO events in the UTLS are also investigated.
Abstract
Temperature observations of the upper-air atmosphere are now available for more than 40 years from both ground- and satellite-based observing systems. Recent years have seen substantial improvements in reducing long-standing discrepancies among datasets through major reprocessing efforts. The advent of radio occultation (RO) observations in 2001 has led to further improvements in vertically resolved temperature measurements, enabling a detailed analysis of upper-troposphere/lower-stratosphere trends. This paper presents the current state of atmospheric temperature trends from the latest available observational records. We analyze observations from merged operational satellite measurements, radiosondes, lidars, and RO, spanning a vertical range from the lower troposphere to the upper stratosphere. The focus is on assessing climate trends and on identifying the degree of consistency among the observational systems. The results show a robust cooling of the stratosphere of about 1–3 K, and a robust warming of the troposphere of about 0.6–0.8 K over the last four decades (1979–2018). Consistent results are found between the satellite-based layer-average temperatures and vertically resolved radiosonde records. The overall latitude–altitude trend patterns are consistent between RO and radiosonde records. Significant warming of the troposphere is evident in the RO measurements available after 2001, with trends of 0.25–0.35 K per decade. Amplified warming in the tropical upper-troposphere compared to surface trends for 2002–18 is found based on RO and radiosonde records, in approximate agreement with moist adiabatic lapse rate theory. The consistency of trend results from the latest upper-air datasets will help to improve understanding of climate changes and their drivers.
Abstract
Temperature observations of the upper-air atmosphere are now available for more than 40 years from both ground- and satellite-based observing systems. Recent years have seen substantial improvements in reducing long-standing discrepancies among datasets through major reprocessing efforts. The advent of radio occultation (RO) observations in 2001 has led to further improvements in vertically resolved temperature measurements, enabling a detailed analysis of upper-troposphere/lower-stratosphere trends. This paper presents the current state of atmospheric temperature trends from the latest available observational records. We analyze observations from merged operational satellite measurements, radiosondes, lidars, and RO, spanning a vertical range from the lower troposphere to the upper stratosphere. The focus is on assessing climate trends and on identifying the degree of consistency among the observational systems. The results show a robust cooling of the stratosphere of about 1–3 K, and a robust warming of the troposphere of about 0.6–0.8 K over the last four decades (1979–2018). Consistent results are found between the satellite-based layer-average temperatures and vertically resolved radiosonde records. The overall latitude–altitude trend patterns are consistent between RO and radiosonde records. Significant warming of the troposphere is evident in the RO measurements available after 2001, with trends of 0.25–0.35 K per decade. Amplified warming in the tropical upper-troposphere compared to surface trends for 2002–18 is found based on RO and radiosonde records, in approximate agreement with moist adiabatic lapse rate theory. The consistency of trend results from the latest upper-air datasets will help to improve understanding of climate changes and their drivers.
To investigate the effects of the middle atmosphere on climate, the World Climate Research Programme is supporting the project “Stratospheric Processes and their Role in Climate” (SPARC). A central theme of SPARC, to examine model simulations of the coupled troposphere–middle atmosphere system, is being performed through the initiative called GRIPS (GCM-Reality Intercomparison Project for SPARC). In this paper, an overview of the objectives of GRIPS is given. Initial activities include an assessment of the performance of middle atmosphere climate models, and preliminary results from this evaluation are presented here. It is shown that although all 13 models evaluated represent most major features of the mean atmospheric state, there are deficiencies in the magnitude and location of the features, which cannot easily be traced to the formulation (resolution or the parameterizations included) of the models. Most models show a cold bias in all locations, apart from the tropical tropopause region where they can be either too warm or too cold. The strengths and locations of the major jets are often misrepresented in the models. Looking at three-dimensional fields reveals, for some models, more severe deficiencies in the magnitude and positioning of the dominant structures (such as the Aleutian high in the stratosphere), although undersampling might explain some of these differences from observations. All the models have shortcomings in their simulations of the present-day climate, which might limit the accuracy of predictions of the climate response to ozone change and other anomalous forcing.
To investigate the effects of the middle atmosphere on climate, the World Climate Research Programme is supporting the project “Stratospheric Processes and their Role in Climate” (SPARC). A central theme of SPARC, to examine model simulations of the coupled troposphere–middle atmosphere system, is being performed through the initiative called GRIPS (GCM-Reality Intercomparison Project for SPARC). In this paper, an overview of the objectives of GRIPS is given. Initial activities include an assessment of the performance of middle atmosphere climate models, and preliminary results from this evaluation are presented here. It is shown that although all 13 models evaluated represent most major features of the mean atmospheric state, there are deficiencies in the magnitude and location of the features, which cannot easily be traced to the formulation (resolution or the parameterizations included) of the models. Most models show a cold bias in all locations, apart from the tropical tropopause region where they can be either too warm or too cold. The strengths and locations of the major jets are often misrepresented in the models. Looking at three-dimensional fields reveals, for some models, more severe deficiencies in the magnitude and positioning of the dominant structures (such as the Aleutian high in the stratosphere), although undersampling might explain some of these differences from observations. All the models have shortcomings in their simulations of the present-day climate, which might limit the accuracy of predictions of the climate response to ozone change and other anomalous forcing.
Abstract
The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5°N, 144.8°E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry–climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloonborne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.
Abstract
The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5°N, 144.8°E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry–climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloonborne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.
The radio occultation (RO) technique, which makes use of radio signals transmitted by the global positioning system (GPS) satellites, has emerged as a powerful and relatively inexpensive approach for sounding the global atmosphere with high precision, accuracy, and vertical resolution in all weather and over both land and ocean. On 15 April 2006, the joint Taiwan-U.S. Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3, hereafter COSMIC) mission, a constellation of six microsatellites, was launched into a 512-km orbit. After launch the satellites were gradually deployed to their final orbits at 800 km, a process that took about 17 months. During the early weeks of the deployment, the satellites were spaced closely, offering a unique opportunity to verify the high precision of RO measurements. As of September 2007, COSMIC is providing about 2000 RO soundings per day to support the research and operational communities. COSMIC RO data are of better quality than those from the previous missions and penetrate much farther down into the troposphere; 70%–90% of the soundings reach to within 1 km of the surface on a global basis. The data are having a positive impact on operational global weather forecast models.
With the ability to penetrate deep into the lower troposphere using an advanced open-loop tracking technique, the COSMIC RO instruments can observe the structure of the tropical atmospheric boundary layer. The value of RO for climate monitoring and research is demonstrated by the precise and consistent observations between different instruments, platforms, and missions. COSMIC observations are capable of intercalibrating microwave measurements from the Advanced Microwave Sounding Unit (AMSU) on different satellites. Finally, unique and useful observations of the ionosphere are being obtained using the RO receiver and two other instruments on the COSMIC satellites, the tiny ionosphere photometer (TIP) and the tri-band beacon.
The radio occultation (RO) technique, which makes use of radio signals transmitted by the global positioning system (GPS) satellites, has emerged as a powerful and relatively inexpensive approach for sounding the global atmosphere with high precision, accuracy, and vertical resolution in all weather and over both land and ocean. On 15 April 2006, the joint Taiwan-U.S. Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3, hereafter COSMIC) mission, a constellation of six microsatellites, was launched into a 512-km orbit. After launch the satellites were gradually deployed to their final orbits at 800 km, a process that took about 17 months. During the early weeks of the deployment, the satellites were spaced closely, offering a unique opportunity to verify the high precision of RO measurements. As of September 2007, COSMIC is providing about 2000 RO soundings per day to support the research and operational communities. COSMIC RO data are of better quality than those from the previous missions and penetrate much farther down into the troposphere; 70%–90% of the soundings reach to within 1 km of the surface on a global basis. The data are having a positive impact on operational global weather forecast models.
With the ability to penetrate deep into the lower troposphere using an advanced open-loop tracking technique, the COSMIC RO instruments can observe the structure of the tropical atmospheric boundary layer. The value of RO for climate monitoring and research is demonstrated by the precise and consistent observations between different instruments, platforms, and missions. COSMIC observations are capable of intercalibrating microwave measurements from the Advanced Microwave Sounding Unit (AMSU) on different satellites. Finally, unique and useful observations of the ionosphere are being obtained using the RO receiver and two other instruments on the COSMIC satellites, the tiny ionosphere photometer (TIP) and the tri-band beacon.