Search Results

You are looking at 1 - 10 of 45 items for

  • Author or Editor: Xiang Li x
  • Refine by Access: All Content x
Clear All Modify Search
Xiaoming Xu
,
Xueqin Zhang
, and
Xiang Li

Abstract

An ideal spatial interpolation approach is indispensable for obtaining high-quality gridded climatic data in mountainous regions with scarce observations, particularly for the Hengduan Mountains Region (HMR) with dense longitudinal ranges and gorges. However, there is much controversy about the applicability of thin plate smooth spline (TPSS), cokriging, and inverse distance weighting (IDW) in mountainous regions. Here, we use the daily observations of temperature and precipitation at 125 stations in HMR and its surroundings from 1961 to 2018 and adopt three interpolation methods to map the annual average temperature and precipitation at a resolution of 500 m in HMR. Then, we assess the applicability of three interpolation methods in HMR from the perspectives of interpolation accuracy and effects. The evaluation implies a satisfactory interpolation accuracy of TPSS with the highest correlation and lowest error, whether for temperature (R 2 = 0.92, RMSE = 1.2°C) or precipitation (R 2 = 0.54, RMSE = 165.9 mm). In addition, the TPSS could better display the temperature (precipitation) gradient along elevation and depict dry valleys’ high-temperature and low-precipitation characteristics. Moreover, the satisfactory interpolation performance of TPSS mainly benefits from the screening of optimal TPSS model that varied primarily with the regional topography feature and meteorological observation density. The uncertainty of gridded climate datasets has become an urgent problem to solve in the complex terrain. This research illustrates the satisfactory applicability of TPSS for climatic spatial interpolation in HMR, providing theoretical support for high-precision interpolation in complex terrain, hopefully improving the regional weather forecasts and disaster warnings.

Open access
Ya Yang
,
Xiang Li
,
Jing Wang
, and
Dongliang Yuan

Abstract

The North Equatorial Subsurface Current (NESC) is a subthermocline ocean current uncovered recently in the tropical Pacific Ocean, flowing westward below the North Equatorial Countercurrent. In this study, the dynamics of the seasonal cycle of this current are studied using historical shipboard acoustic Doppler current profiler measurements and Argo absolute geostrophic currents. Both data show a westward current at the depths of 200–1000 m between 4° and 6°N, with a typical core speed of about 5 and 2 cm s−1, respectively. The subsurface current originates in the eastern Pacific, with its core descending to deeper isopycnal surfaces and moving to the equator as it flows westward. The zonal velocity of the NESC shows pronounced seasonal variability, with the annual-cycle harmonics of vertical isothermal displacement and zonal velocity presenting characters of vertically propagating baroclinic Rossby waves. A simple analytical Rossby wave model is employed to simulate the propagation of the seasonal variations of the westward zonal currents successfully, which is the basis for exploring the wind forcing dynamics. The results suggest that the wind curl forcing in the central-eastern basin between 170° and 140°W associated with the meridional movement of the intertropical convergence zone dominates the NESC seasonal variability in the western Pacific, with the winds west of 170°W and east of 140°W playing a minor role in the forcing.

Free access
Xiang Li
,
Sundar A. Christopher
,
Joyce Chou
, and
Ronald M. Welch

Abstract

Using a new angular distribution model (ADM) for smoke aerosols, the instantaneous top-of-atmosphere (TOA) shortwave aerosol radiative forcing (SWARF) is calculated for selected days over biomass-burning regions in South America. The visible and infrared scanner data are used to detect smoke aerosols and the Clouds and the Earth’s Radiant Energy System (CERES) scanner data from the Tropical Rainfall Measuring Mission are used to obtain the broadband radiances. First, the ADM for smoke aerosols is calculated over land surfaces using a discrete-ordinate radiative transfer model. The instantaneous TOA shortwave (SW) fluxes are estimated using the new smoke ADM and are compared with the SW fluxes from the CERES product. The rms error between the CERES SW fluxes and fluxes using the smoke ADM is 13 W m−2. The TOA SWARFs per unit optical thickness for the six surface types range from −29 to −57 W m−2, showing that smoke aerosols have a distinct cooling effect. The new smoke ADM developed as part of this study could be used to estimate radiative impact of biomass-burning aerosols.

Full access
Hui Zhou
,
Dongliang Yuan
,
Lina Yang
,
Xiang Li
, and
William Dewar

Abstract

The meridional geostrophic transport (MGT) in the interior tropical North Pacific Ocean is estimated based on global ocean heat and salt content data. The decadal variations of the zonally and vertically integrated MGT in the tropical North Pacific Ocean are found to precede the Pacific decadal oscillation (PDO) by 1–3 years. The dynamics of the MGT are analyzed based on Sverdrup theory. It is found that the total meridional transport variability (MGT plus Ekman) is dominated by the MGT variability having positive correlations with the PDO index. The Sverdrup transports differ from the total meridional transport significantly and have insignificant correlations with PDO index, suggesting that the MGT variability is not controlled by the Sverdrup dynamics. In comparison, the simulated meridional transport variability in the models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and the Ocean General Circulation Model for the Earth Simulator are dominated by the Sverdrup transports, having insignificant correlations with the simulated PDO indices. The comparison suggests that the non-Sverdrup component in the MGT is important for the predictability of PDO and that significant deficiencies exist in these models in simulating a realistic structure of the tropical ocean gyre variability and predicting the decadal climate variations associated with it.

Full access
Chenxi Li
,
Xihui Gu
,
Louise J. Slater
,
Jianyu Liu
,
Jianfeng Li
,
Xiang Zhang
, and
Dongdong Kong

Abstract

Heavy precipitation (HP) events can be preceded by moist heatwaves (HWs; i.e., hot and humid weather), and both can be intensified by urbanization. However, the effect of moist HWs on increasing urban HP remains unknown. Based on statistical analyses of daily weather observations and ERA5 reanalysis data, we herein investigate the effect of moist HWs on urban-intensified HP by dividing summer HP events into NoHW- and HW-preceded events in the Yangtze River delta (YRD) urban agglomeration of China. During the period 1961–2019, the YRD has experienced more frequent, longer-lasting, and stronger intense HP events in the summer season (i.e., June–August), and urbanization has contributed to these increases (by 22.66%–37.50%). In contrast, urban effects on HP are almost absent if we remove HW-preceded HP events from all HP events. Our results show that urbanization-induced increases in HP are associated with, and magnified by, moist HWs in urban areas of the YRD region. Moist HWs are conducive to an unstable atmosphere and stormy weather, and they also enhance urban heat island intensity, driving increases in HP over urban areas.

Significance Statement

The contribution of urbanization to increases in heavy precipitation has been widely reported in previous studies. HP events can be preceded by moist heatwaves (hot and humid extremes); however, it is unknown whether moist HWs enhance urban effects on HP. We choose the Yangtze River delta urban agglomeration to explore this question and find that urbanization contributes to the increasing frequency, duration, maximum intensity, and cumulative intensity of HP events in the summer season. However, this urban signal is not detectable if we remove HW-preceded events from all HP events. In other words, moist HWs play a key role in magnifying urbanization-induced increases in HP. Given that urban areas are projected to continue expanding and moist HWs are projected to occur with increasing frequency and intensity in the future, the role of HWs in the urban water cycle merits further investigation.

Free access
Chengyan Liu
,
Zhaomin Wang
,
Xi Liang
,
Xiang Li
,
Xichen Li
,
Chen Cheng
, and
Di Qi

Abstract

Warm deep water intrusion over the Antarctic continental shelves threatens the Antarctic ice sheet stability by enhancing the basal melting of ice shelves. In East Antarctica, the Antarctic Slope Current (ASC), along with the Antarctic Slope Front (ASF), acts as a potential vorticity barrier to prevent the warm modified Circumpolar Deep Water (mCDW) from ventilating the cold and fresh shelf. However, mCDW onshore transport is still observed within certain shelf regions, such as submarine troughs running perpendicular to the continental shelf. This study focuses on the dynamic mechanisms governing mCDW intrusion within a submarine trough over the fresh shelf regions, East Antarctica. Based on an idealized eddy-resolving coupled ocean–ice shelf model, two high-resolution process-oriented numerical experiments are conducted to reveal the mechanisms responsible for the mCDW onshore transport. Three dynamic mechanisms governing cross-slope mCDW intrusion are identified: 1) the bottom pressure torque, 2) the topography beta spiral, and 3) the topography Rossby waves. These three mechanisms simultaneously govern the mCDW intrusion together. The bottom pressure torque plays a leading role in driving the time-mean onshore flow whose vertical structure is determined by the topography beta spiral, while the topography Rossby waves contribute to the high-frequency oscillations in the onshore volume and heat transport. The simulated spatial distribution and seasonality of mCDW intrusion qualitatively coincide with the observed mCDW intrusion over fresh shelf regions, East Antarctica. Both the topography beta spiral and the ASC play an important role in governing the seasonality of mCDW intrusion.

Open access
Yuhang Xiang
,
Juan Li
,
Bin Wang
,
Libin Ma
, and
Zhiwei Zhu

Abstract

Eastward propagation is an essential feature of the Madden–Julian oscillation (MJO). Yet, it remains a challenge to realistically simulate it by global climate system models, and the reasons are not fully understood. This study evaluates the capability of 20 Coupled Model Intercomparison Project phase 6 (CMIP6) models in simulating MJO’s eastward propagation and its intrinsic links with the dynamic–thermodynamic structures and the background mean states, aiming at better understanding the sources of the simulation errors. The metrics to evaluate the MJO internal dynamics consists of six parameters: 1) the east–west asymmetry in the low-level circulation, 2) the boundary layer moisture convergence propagation, 3) the vertical tilt of equivalent potential temperature or moist static energy, the vertical structures of 4) diabatic heating and 5) available potential energy generation, and 6) upper-level diabatic heating and divergence. We also gauge the performance of three MJO-related background mean-state fields, including precipitation, sea surface temperature, and low-level moist static energy. It is argued that these parameters are relevant internal and external factors that could affect MJO eastward propagation. We find that the boundary layer moisture convergence is most tightly coupled with the eastward propagation of MJO and controls the premoistening, destabilization, and the leading low-level diabatic heating and available potential energy generation. The CMIP6 models exhibit significant improvements against CMIP5 models in simulating MJO dynamic–thermodynamic structures and the mean states. The diagnostics in this study could help to identify the possible processes related to CMIP6 models’ shortcomings and shed light on how to improve simulation of MJO eastward propagation in the future.

Restricted access
Liudan Ding
,
Tim Li
,
Baoqiang Xiang
, and
Melinda Peng

Abstract

Hurricane Sandy (2012) experienced an unusual westward turning and made landfall in New Jersey after its northward movement over the Atlantic Ocean. The landfall caused severe casualties and great economic losses. The westward turning took place in the midlatitude Atlantic where the climatological mean wind is eastward. The cause of this unusual westward track is investigated through both observational analysis and model simulations. The observational analysis indicates that the hurricane steering flow was primarily controlled by atmospheric intraseasonal oscillation (ISO), which was characterized by a pair of anticyclonic and cyclonic circulation systems. The anticyclone to the north was part of a global wave train forced by convection over the tropical Indian Ocean through Rossby wave energy dispersion, and the cyclone to the south originated from the tropical Atlantic through northward propagation. Hindcast experiments using a global coupled model show that the model is able to predict the observed circulation pattern as well as the westward steering flow 6 days prior to Sandy’s landfall. Sensitivity experiments with different initial dates confirm the important role of the ISO in establishing the westward steering flow in the midlatitude Atlantic. Thus the successful numerical model experiments suggest a potential for extended-range dynamical tropical cyclone track predictions.

Full access
Baoqiang Xiang
,
Bin Wang
,
Juan Li
,
Ming Zhao
, and
June-Yi Lee

Abstract

Understanding the change of equatorial Pacific trade winds is pivotal for understanding the global mean temperature change and the El Niño–Southern Oscillation (ENSO) property change. The weakening of the Walker circulation due to anthropogenic greenhouse gas (GHG) forcing was suggested as one of the most robust phenomena in current climate models by examining zonal sea level pressure gradient over the tropical Pacific. This study explores another component of the Walker circulation change focusing on equatorial Pacific trade wind change. Model sensitivity experiments demonstrate that the direct/fast response due to GHG forcing is to increase the trade winds, especially over the equatorial central-western Pacific (ECWP) (5°S–5°N, 140°E–150°W), while the indirect/slow response associated with sea surface temperature (SST) warming weakens the trade winds.

Further, analysis of the results from 19 models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) and the Parallel Ocean Program (POP)–Ocean Atmosphere Sea Ice Soil (OASIS)–ECHAM model (POEM) shows that the projected weakening of the trades is robust only in the equatorial eastern Pacific (EEP) ( 5°S–5°N, 150°–80°W), but highly uncertain over the ECWP with 9 out of 19 CMIP5 models producing intensified trades. The prominent and robust weakening of EEP trades is suggested to be mainly driven by a top-down mechanism: the mean vertical advection of more upper-tropospheric warming downward to generate a cyclonic circulation anomaly in the southeast tropical Pacific. In the ECWP, the large intermodel spread is primarily linked to model diversity in simulating the relative warming of the equatorial Pacific versus the tropical mean sea surface temperature. The possible root causes of the uncertainty for the trade wind change are also discussed.

Full access
Guoyu Ren
,
Hongbin Liu
,
Ziying Chu
,
Li Zhang
,
Xiang Li
,
Weijing Li
,
Yu Chen
,
Ge Gao
, and
Yan Zhang
Full access