Search Results

You are looking at 101 - 110 of 179 items for :

  • Tornadogenesis x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All
Carl E. Hane
and
Peter S. Ray

retrievalmethods to boundary layer data from Project PHOENIX. Pasken and Lin (1982) derived pressure perturbation fields in a tornadic storm which occurred on8 June 1974, using the technique outlined by GalChen (1978). In a study of tornadogenesis in threeobserved storms, Brandes (1984) derived pressure andpotential temperature fields using a slightly differentapproach, but also based upon the three momentumequations. Roux et al. (1984) applied a methodsimilar to that of Gal-Chen (1978) in deriving pressureand

Full access
J. B. Klemp
,
R. B. Wilhelmson
, and
P. S. Ray

main downdraft regions are apparent. By 1847 the Del City storm has reached its tornadic phase and its structure has evolved to thatshown in Fig. 6. Although the overall features of thestorm at this time are similar to those at 1833, significant smaller scale structure has developed in association with the tornadogenesis. Because of thestrong low-level cyclonic rotation the cold downdraft outflow appears to progress cyclonicallyaround the primary convergence zone between 1833and 1847. In this

Full access
Y. J. Lin
,
T. C. Wang
, and
J. H. Lin

thereal Doppler storm data. For example, Pasken and Lin(1982) derived pressure perturbations within a tomadicstorm, which occurred on 8 June 1974, from dualDoppler data. Using dual-Doppler data obtained fromtwo different tornadic storms, Brandes (1984) studiedthe relationships between radar-derived thermodynamic variables and tornadogenesis from the surfaceto the middle troposphere. Hane and Ray (1985) retrieved pressure and buoyancy fields from multipleDoppler data of the Del City tornadic storm in

Full access
Mankin Mak

of the North Pacific retrograde disturbances. J. Atmos. Sci , 52 , 1630 – 1641 . Huerre , P. , and P. A. Monkewitz , 1990 : Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech , 22 , 473 – 538 . Lee , W-J. , and M. Mak , 1995 : Dynamics of storm tracks: A linear instability perspective. J. Atmos. Sci , 52 , 697 – 723 . Mak , M. , 2001 : Nonhydrostatic barotropic instability: Applicability to nonsupercell tornadogenesis. J. Atmos. Sci

Full access
G. Brant Foote
and
Harold W. Frank

zenith-pointing Doppler radar. J. Appl. Meteor., 19, 580-592.Brandes, E. A., 1978: Me~ocyclone evolution and tornadogenesis: some observations. Mon. Wea. Rev.,'106, 995-1011.--, 1981: Fine structure of the Del City-Edmond tornadic me socirculation. Mon. Wea. Rev.,. 109, 635-647.Browning, K. ,A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634-639. , 1977: The Structure and Mechanisms of Hailstorms. Haik

Full access
T. Theodore Fujita

families. Mon. Wea. Rev., 104, 552-563. --, F. S. Nickerson, P. R. Clare, C. R. Church and L. A. ~chall, 1977: An observational study of the West Lafayette, Indiana Tornado of 20 March 1976. Mon. Wea. Rev., 105, 893 -907.Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mort. Wea. Rev. , ~, 995-1011.Brooks, C. F,, 1922: The local, or heat thunderstorm. Mon. Wea. Rev., 50, 281-287.Brown, J. M., and K. R. Knupp, 1980: The Iowa cyclonic-anti cyclonic tornado pair

Full access
Rodger A. Brown

, EnvironmentalResearch Laboratories, Boulder, 253 pp.Barnes, S. L., 1968: On the source of thunderstorm rotation. ESSATech. Memo. ERLTM-NSSL 38, NatI. Severe Storms Lab.,Norman, 28 pp. [NTIS, PB-!78970]-,1970: Some aspects of a severe, right-moving thunderstormdeduced from mesonetwork rawinsonde observations. I Atmos.Sci., 27, 634-648.Brandes, E. A., 1984: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mon. Wea. Rev., 112,1033- 1052.Brooks, E. M., 1949: The tornado cyclone

Full access
Evan A. Kalina
,
Katja Friedrich
,
Hugh Morrison
, and
George H. Bryan

, 9941 – 9964 , doi: 10.5194/acp-12-9941-2012 . Lerach , D. G. , and W. R. Cotton , 2012 : Comparing aerosol and low-level moisture influences on supercell tornadogenesis: Three-dimensional idealized simulations . J. Atmos. Sci. , 69 , 969 – 987 , doi: 10.1175/JAS-D-11-043.1 . Lerach , D. G. , B. J. Gaudet , and W. R. Cotton , 2008 : Idealized simulations of aerosol influences on tornadogenesis . Geophys. Res. Lett. , 35 , L23806 , doi: 10.1029/2008GL035617 . Lesins , G. B. , R

Full access
Masayuki Kawashima
and
Yasushi Fujiyoshi

Priority Areas Final Rep. A-4-2, 609 pp . Klemp , J. B. , and R. J. B. Rotunno , 1983 : A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci. , 40 , 359 – 377 . Laird , N. F. , L. J. Miller , and D. A. R. Kristovich , 2001 : Synthetic dual-Doppler analysis of a winter mesoscale vortex. Mon. Wea. Rev. , 129 , 312 – 331 . Lee , B. D. , and R. B. Wilhelmson , 1997a : The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and

Full access
Morris L. Weisman
and
Richard Rotunno

resolve storm-scale features, such as the midlevel updraft structure and low-level mesocyclogenesis, but are not generally considered sufficient to accurately represent tornadogenesis. The domain is 120 km by 120 km by 17.5 km, with each simulation extending out through 2 h. Storms are triggered using an elipsoidal bubble of warm air of horizontal radius 10 km and vertical radius of 1400 m, with a maximum temperature perturbation of 1 K specified at the center of the bubble, decreasing to zero at its

Full access