Search Results

You are looking at 131 - 140 of 191 items for :

  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All
Marc Schleiss and James Smith

pp . Cifelli, R. , Petersen W. A. , Carey L. D. , Rutledge S. A. , and Dias M. A. F. D. , 2002 : Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA . J. Geophys. Res. , 107 , 8077 , doi: 10.1029/2000JD000264 . Crane, R. K. , 1979 : Automatic cell detection and tracking . IEEE Trans. Geosci. Electron. , 17 , 250 – 262 , doi: 10.1109/TGE.1979.294654 . Delhomme, J.-P. , 1978 : Kriging in the hydrosciences . Adv. Water

Full access
Amin K. Dezfuli, Benjamin F. Zaitchik, Hamada S. Badr, Jason Evans, and Christa D. Peters-Lidard

the recent Syrian drought . Proc. Natl. Acad. Sci. USA , 112 , 3241 – 3246 , doi: 10.1073/pnas.1421533112 . 10.1073/pnas.1421533112 Kingsmill , D. E. , P. J. Neiman , B. J. Moore , M. Hughes , S. E. Yuter , and F. M. Ralph , 2013 : Kinematic and thermodynamic structures of Sierra barrier jets and overrunning atmospheric rivers during a landfalling winter storm in Northern California . Mon. Wea. Rev. , 141 , 2015 – 2036 , doi: 10.1175/MWR-D-12-00277.1 . 10.1175/MWR-D-12

Full access
Gang Chen, Kun Zhao, Guifu Zhang, Hao Huang, Su Liu, Long Wen, Zhonglin Yang, Zhengwei Yang, Lili Xu, and Wenjian Zhu

. , 47 , 2238 – 2255 , doi: 10.1175/2008JAMC1732.1 . 10.1175/2008JAMC1732.1 Cao , Q. , G. Zhang , E. Brandes , and T. Schuur , 2010 : Polarimetric radar rain estimation through retrieval of drop size distribution using a Bayesian approach . J. Appl. Meteor. Climatol. , 49 , 973 – 990 , doi: 10.1175/2009JAMC2227.1 . 10.1175/2009JAMC2227.1 Cifelli , R. , W. A. Petersen , L. D. Carey , S. A. Rutledge , and M. A. da Silva Dias , 2002 : Radar observations of the kinematic, microphysical

Full access
Maheswor Shrestha, Lei Wang, Toshio Koike, Yongkang Xue, and Yukiko Hirabayashi

employing the Pfafstetter scheme, and subbasins are divided into a number of flow intervals based on the time of concentration. All external parameters (e.g., land use, soil type, hillslope properties, and vegetation parameters) and a meteorological forcing dataset including precipitation are attributed to each model grid, in which water, energy, and CO 2 fluxes are calculated. A hillslope-driven runoff scheme employing a kinematic wave flow routing method is adopted in calculating runoff. For snow

Full access
Yusri Yusup and Heping Liu

the dimensionless Obukhov atmospheric stability parameter , where z is the height above the surface level and is the Obukhov length. The Obukhov length is described by , where is virtual potential temperature (K); is frictional velocity, which can be measured by the eddy covariance system (m s −1 ); k is the von Kármán constant (0.4); g is acceleration due to gravity (9.8 m s −2 ); w is vertical velocity (m s −1 ); and is vertical kinematic heat flux, which can be measured by the

Full access
Jonathan J. Gourley, Yang Hong, Zachary L. Flamig, Jiahu Wang, Humberto Vergara, and Emmanouil N. Anagnostou

runoff is kinematically routed downstream based on cell connectivity, slope, and flow direction derived from a digital elevation model. Two parameters describe the channel routing component. A power-law equation employing a coefficient and exponent is used to describe the relation between discharge and cross-sectional area. These parameters are found empirically using measurements of cross-sectional area and discharge at the USGS stream-gauging site circled in Fig. 1 . Forcing to HL-RDHM includes

Full access
Jasper A. Vrugt, Hoshin V. Gupta, BreanndánÓ Nualláin, and Willem Bouten

capacities and the upper zone storage is full. Percolation from the upper to the lower layer is controlled by a complex nonlinear process dependent on the storages in both soil zones. The model has 13 user-specifiable (and 3 fixed) parameters and an evapotranspiration demand curve (or adjustment curve). Inputs to the model include mean areal precipitation (MAP) and potential evapotranspiration (PET) while the outputs are estimated evapotranspiration and channel inflow. A unit hydrograph or kinematic wave

Full access
Xia Feng, Alok Sahoo, Kristi Arsenault, Paul Houser, Yan Luo, and Tara J. Troy

al. (1993) where α diff,0 is the fresh snow albedo, C is an empirical constant, F age is a transformed snow age used to give the fractional reduction of snow albedo as a result of snow aging for solar zenith angle less than 60°, μ is solar zenith angle, and the function f  ( μ ) is a factor between 0 and 1 that is needed to increase the snow albedo as a result of the solar zenith angle exceeding 60°. The model calculates surface vertical kinematic fluxes of momentum

Full access
Xiaokang Wang, Xiquan Dong, Yi Deng, Chunguang Cui, Rong Wan, and Wenjun Cui

. Climate Dyn. , 51 , 1659 – 1670 , https://doi.org/10.1007/s00382-017-3975-4 . 10.1007/s00382-017-3975-4 Lin , Y.-J. , R. W. Pasken , and H.-W. Chang , 1992 : The structure of a subtropical prefrontal convective rainband. Part I: Mesoscale kinematic structure determined from dual-Doppler measurements . Mon. Wea. Rev. , 120 , 1816 – 1836 , https://doi.org/10.1175/1520-0493(1992)120<1816:TSOASP>2.0.CO;2 . 10.1175/1520-0493(1992)120<1816:TSOASP>2.0.CO;2 Liu , M.-L. , and Q.-Q. Wang , 2006

Open access
Isidora Jankov, Jian-Wen Bao, Paul J. Neiman, Paul J. Schultz, Huiling Yuan, and Allen B. White

>2.0.CO;2 Marwitz, J. , 1983 : The kinematics of orographic airflow during Sierra storms. J. Atmos. Sci. , 40 , 1218 – 1227 . 10.1175/1520-0469(1983)040<1218:TKOOAD>2.0.CO;2 Mattioli, V. , Westwater E. R. , Cimini D. , Liljegren J. S. , Lesht B. M. , Gutman S. I. , and Schmidlin F. J. , 2007 : Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment. J. Atmos. Oceanic Technol. , 24 , 415

Full access