Search Results

You are looking at 161 - 170 of 210 items for :

  • Tornadogenesis x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All
G. S. Young
,
T. N. Sikora
, and
N. S. Winstead

. Remote Sens. , 30 , 2 – 27 . 10.1109/36.124212 Kuo, Y-H. , Reed R. J. , and Low-Nam S. , 1992 : Thermal structure and airflow in a model simulation of an occluded marine cyclone. Mon. Wea. Rev. , 120 , 2280 – 2297 . 10.1175/1520-0493(1992)120<2280:TSAAIA>2.0.CO;2 Lee, D. L. , and Wilhelmson R. B. , 1997 : The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci

Full access
Rita D. Roberts
,
Donald Burgess
, and
Matthew Meister

); the collision of surface convergence boundaries is considered a significant factor in the rapid intensification of storms and for tornadogenesis (see Sills et al. 2004 and their references). The WDSS-based fields provide crucial information on the likelihood for specific types of severe weather to occur. At this time period, the likelihood values for tornadoes ( Fig. 12c ) and large hail ( Fig. 12e ) are very high, ranging from 0.6 to 1.0 and 1.0, respectively. And although the mesocyclonic

Full access
Alexandra K. Anderson-Frey
,
Yvette P. Richardson
,
Andrew R. Dean
,
Richard L. Thompson
, and
Bryan T. Smith

. Climate Extremes , 20 , 81 – 91 , https://doi.org/10.1016/j.wace.2018.03.002 . 10.1016/j.wace.2018.03.002 Markowski , P. , and Y. Richardson , 2009 : Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research . Atmos. Res. , 93 , 3 – 10 , https://doi.org/10.1016/j.atmosres.2008.09.015 . 10.1016/j.atmosres.2008.09.015 May , O. , and A. Bigham , 2012 : After the storm: Personal experiences following an EF4 tornado . J. Pediatr. Nurs

Full access
Raymond M. Zehr
,
James F. W. Purdom
,
John F. Weaver
, and
Robert N. Green

.Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis:Some observations. Mon. Wea. Rev., 106, 995-1011.Browning, K. A., 1980: Review of local weather forecasting. Proc. Roy. Soc. London, A371, 197-211.--., 1982: Nowcasting. Academic Press, 256 pp.Byers, H. R., and R. R. Braham, Jr., 1949: The Thunderstorm. U.S. Govt. Printing Office, Washington, DC, 287 pp.Chahine, M. T., 1968: Determination of the temperature profile in an atmosphere from its outgoing radiance. J. Opt. Soc.' Amer., 58

Full access
Casey E. Davenport
and
Matthew D. Parker

Doswell C. A. III , 1979 : Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis . Mon. Wea. Rev. , 107 , 1184 – 1197 , doi: 10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2 . Lilly, D. K. , 1986 : The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization . J. Atmos. Sci. , 43 , 126 – 140 , doi: 10.1175/1520-0469(1986)043<0126:TSEAPO>2.0.CO;2 . Maddox, R. A. , Hoxit L. R. , and Chappell C. F

Full access
Katie A. Bowden
,
Pamela L. Heinselman
,
Darrel M. Kingfield
, and
Rick P. Thomas

was due to their warning criteria not being fully satisfied. For example, in case 1, P 3 said that she was “flirting with the criteria” since the storm appeared “more marginal,” and P 4 went ahead with issuing a tornado warning in case 2 despite being “not sure [that the] environment was conducive” for tornadogenesis. Similarly, some experimental participants found themselves making warning decisions without confidence. During case 2, P 10 questioned the severe potential of a storm on which

Full access
Matthew S. Van Den Broeke
and
Cynthia A. Van Den Broeke

numerically simulated idealized squall line to the vertical distribution of aerosols . J. Atmos. Sci. , 71 , 4581 – 4596 , doi: 10.1175/JAS-D-14-0068.1 . Lebo, Z. J. , and Morrison H. , 2014 : Dynamical effects of aerosol perturbations on simulated idealized squall lines . Mon. Wea. Rev. , 142 , 991 – 1009 , doi: 10.1175/MWR-D-13-00156.1 . Lee, B. D. , and Wilhelmson R. B. , 1997 : The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic

Full access
Jari-Petteri Tuovinen
,
Jenni Rauhala
, and
David M. Schultz

: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis . Mon. Wea. Rev. , 107 , 1184 – 1197 , doi: 10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2 . Nelson, S. P. , and Young S. K. , 1979 : Characteristics of Oklahoma hailfalls and hailstorms . J. Appl. Meteor. , 18 , 339 – 347 , doi: 10.1175/1520-0450(1979)018<0339:COOHAH>2.0.CO;2 . Outinen, K. , and Teittinen J. , 2008 : Polarimetric radar observations of a tornadic supercell in Finland. Preprints

Full access
Michael A. Fowle
and
Paul J. Roebber

Representation of Cumulus Convection in Numerical Models . Meteor. Monogr., No. 46, Amer. Meteor. Soc., 246 pp . Finley, C. A. , Cotton W. R. , and Pielke R. A. Sr. , 2001 : Numerical simulation of tornadogenesis in a high-precipitation supercell. Part I: Storm evolution and transition into a bow echo. J. Atmos. Sci. , 58 , 1597 – 1629 . 10.1175/1520-0469(2001)058<1597:NSOTIA>2.0.CO;2 Fritsch, J. M. , and Coauthors . 1998 : Quantitative precipitation forecasting: Report of the Eighth

Full access
Donald W. Burgess
,
Michael A. Magsig
,
Joshua Wurman
,
David C. Dowell
, and
Yvette Richardson

: The tornadoes of 3 May 1999: Event verification in central Oklahoma and related issues. Wea. Forecasting , 17 , 362 – 381 . 10.1175/1520-0434(2002)017<0362:TTOMEV>2.0.CO;2 Wicker, L. J. , and Wilhelmson R. B. , 1993 : Numerical simulation of tornadogenesis within a supercell thunderstorm. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 75–88 . Wood, V. T. , and Brown R. A. , 1997 : Effects of radar sampling on single

Full access