Search Results
differing initial conditions) of the same atmospheric phenomenon can lead to insightful statistics. One such example is Coffer et al. (2017) , which examined tornadogenesis probabilities from a statistical perspective utilizing 30 unique CM1 simulations of tornadic and nontornadic supercells. To date, no studies have attempted to examine the statistical distribution of surface winds from WFTs using output from multiple high-resolution simulations in a manner similar to the Coffer et al. (2017) study
differing initial conditions) of the same atmospheric phenomenon can lead to insightful statistics. One such example is Coffer et al. (2017) , which examined tornadogenesis probabilities from a statistical perspective utilizing 30 unique CM1 simulations of tornadic and nontornadic supercells. To date, no studies have attempted to examine the statistical distribution of surface winds from WFTs using output from multiple high-resolution simulations in a manner similar to the Coffer et al. (2017) study
Programming Language . J. Open Res. Software , 4 , e25 , https://doi.org/10.5334/jors.119 . 10.5334/jors.119 Houser , J. L. , H. B. Bluestein , and J. C. Snyder , 2015 : Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011 . Mon. Wea. Rev. , 143 , 2685 – 2710 , https://doi.org/10.1175/MWR-D-14-00253.1 . 10.1175/MWR-D-14-00253.1 Hubbert , J. C. , V. N. Bringi , L. D
Programming Language . J. Open Res. Software , 4 , e25 , https://doi.org/10.5334/jors.119 . 10.5334/jors.119 Houser , J. L. , H. B. Bluestein , and J. C. Snyder , 2015 : Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011 . Mon. Wea. Rev. , 143 , 2685 – 2710 , https://doi.org/10.1175/MWR-D-14-00253.1 . 10.1175/MWR-D-14-00253.1 Hubbert , J. C. , V. N. Bringi , L. D
related to tornadogenesis. Mort. Wea. Rev., 107, 1184-1197.Marwitz, J. D., 1972: The structure and motions of severe hailstorms: Part I. Supercell storms. J. Appl. Meteor., 11, 166-179.McGinley, J., 1986: Nowcasting mesoseale phenomena. Mesoscale Meteorology and Forecasting. Peter S. Ray, Ed., Amer. Meteor. Soc., 657-688.McNulty, R., 1978: On upper tropospheric kinematics and severe weather occurrence. Mon. Wea. Rev., 106, 662-672.Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and
related to tornadogenesis. Mort. Wea. Rev., 107, 1184-1197.Marwitz, J. D., 1972: The structure and motions of severe hailstorms: Part I. Supercell storms. J. Appl. Meteor., 11, 166-179.McGinley, J., 1986: Nowcasting mesoseale phenomena. Mesoscale Meteorology and Forecasting. Peter S. Ray, Ed., Amer. Meteor. Soc., 657-688.McNulty, R., 1978: On upper tropospheric kinematics and severe weather occurrence. Mon. Wea. Rev., 106, 662-672.Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and
, and J. F. Weaver , 1994 : Some noteworthy aspects of the Hesston, Kansas, tornado family of 13 March 1990 . Bull. Amer. Meteor. Soc. , 75 , 1007 – 1018 , https://doi.org/10.1175/1520-0477(1994)075<1007:SNAOTH>2.0.CO;2 . 10.1175/1520-0477(1994)075<1007:SNAOTH>2.0.CO;2 Dowell , D. C. , and H. B. Bluestein , 2002a : The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis . Mon. Wea. Rev. , 130 , 2626 – 2648 , https://doi.org/10
, and J. F. Weaver , 1994 : Some noteworthy aspects of the Hesston, Kansas, tornado family of 13 March 1990 . Bull. Amer. Meteor. Soc. , 75 , 1007 – 1018 , https://doi.org/10.1175/1520-0477(1994)075<1007:SNAOTH>2.0.CO;2 . 10.1175/1520-0477(1994)075<1007:SNAOTH>2.0.CO;2 Dowell , D. C. , and H. B. Bluestein , 2002a : The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis . Mon. Wea. Rev. , 130 , 2626 – 2648 , https://doi.org/10
ridges to their northeast creating an asymmetrical wind pattern. Low-level winds increased significantly east of the lows, and a favorable shear environment for tornadogenesis developed well east of the lows in the overrunning zone. In each case the orientation and slow movement of the hybrid cyclones caused peninsular Florida to be in a favorable shear and moisture environment for tornado and excessive rain production for 12–18 h. Most of the tornadoes occurred in the overrunning zone very near or
ridges to their northeast creating an asymmetrical wind pattern. Low-level winds increased significantly east of the lows, and a favorable shear environment for tornadogenesis developed well east of the lows in the overrunning zone. In each case the orientation and slow movement of the hybrid cyclones caused peninsular Florida to be in a favorable shear and moisture environment for tornado and excessive rain production for 12–18 h. Most of the tornadoes occurred in the overrunning zone very near or
.] WAMDI Group, 1988: The WAM model- A third-generation ocean wave prediction model. J. Phys. Oceanogr., 18, 1775- 1810. Willoughby, H. E., and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77, 543- 549. , J. M. Masters, and C. W. Landsea, 1989: A record sea level pressure observed in Hurricane Gilbert. Mon. Wea. Rev., 117, 2824- 2828. Wilson, J. W., 1986: Tornadogenesis by nonprecipitation induced wind shear lines. Mon. Wea. Rev
.] WAMDI Group, 1988: The WAM model- A third-generation ocean wave prediction model. J. Phys. Oceanogr., 18, 1775- 1810. Willoughby, H. E., and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77, 543- 549. , J. M. Masters, and C. W. Landsea, 1989: A record sea level pressure observed in Hurricane Gilbert. Mon. Wea. Rev., 117, 2824- 2828. Wilson, J. W., 1986: Tornadogenesis by nonprecipitation induced wind shear lines. Mon. Wea. Rev
. Wea. Forecasting , 16 , 329 – 342 . 10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2 Finley, C. A. , Cotton W. R. , and Pielke R. A. , 2001 : Numerical simulation of tornadogenesis in a high-precipitation supercell. Part I: Storm evolution and transition into a bow echo. J. Atmos. Sci. , 58 , 1597 – 1629 . 10.1175/1520-0469(2001)058<1597:NSOTIA>2.0.CO;2 Fujita, T. T. , 1978 : Manual of downburst identification for project NIMROD. SMRP Research Paper 117, University of Chicago, 104
. Wea. Forecasting , 16 , 329 – 342 . 10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2 Finley, C. A. , Cotton W. R. , and Pielke R. A. , 2001 : Numerical simulation of tornadogenesis in a high-precipitation supercell. Part I: Storm evolution and transition into a bow echo. J. Atmos. Sci. , 58 , 1597 – 1629 . 10.1175/1520-0469(2001)058<1597:NSOTIA>2.0.CO;2 Fujita, T. T. , 1978 : Manual of downburst identification for project NIMROD. SMRP Research Paper 117, University of Chicago, 104
.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2 Finley, C. A. , Cotton W. R. , and Pielke R. A. Sr. , 2001 : Numerical simulation of tornadogenesis in a high-precipitation supercell. Part I: Storm evolution and transition into a bow echo. J. Atmos. Sci. , 38 , 1597 – 1629 . Fujita, T. T. , 1978 : Manual of downburst identification for Project Nimrod. Satellite and Mesometeorology Research Paper 156, Dept. of Geophysical Sciences, University of Chicago, 104 pp . Fujita, T. T. , 1981 : Tornadoes and downbursts in
.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2 Finley, C. A. , Cotton W. R. , and Pielke R. A. Sr. , 2001 : Numerical simulation of tornadogenesis in a high-precipitation supercell. Part I: Storm evolution and transition into a bow echo. J. Atmos. Sci. , 38 , 1597 – 1629 . Fujita, T. T. , 1978 : Manual of downburst identification for Project Nimrod. Satellite and Mesometeorology Research Paper 156, Dept. of Geophysical Sciences, University of Chicago, 104 pp . Fujita, T. T. , 1981 : Tornadoes and downbursts in
.1029/93JD01617 . 10.1029/93JD01617 Gatlin , P. N. , and S. J. Goodman , 2010 : A total lightning trending algorithm to identify severe thunderstorms . J. Atmos. Oceanic Technol. , 27 , 3 – 22 , https://doi.org/10.1175/2009JTECHA1286.1 . 10.1175/2009JTECHA1286.1 Goodman , S. J. , and K. R. Knupp , 1993 : Tornadogenesis via squall line and supercell interaction: The November 15, 1989 Huntsville, Alabama tornado. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr
.1029/93JD01617 . 10.1029/93JD01617 Gatlin , P. N. , and S. J. Goodman , 2010 : A total lightning trending algorithm to identify severe thunderstorms . J. Atmos. Oceanic Technol. , 27 , 3 – 22 , https://doi.org/10.1175/2009JTECHA1286.1 . 10.1175/2009JTECHA1286.1 Goodman , S. J. , and K. R. Knupp , 1993 : Tornadogenesis via squall line and supercell interaction: The November 15, 1989 Huntsville, Alabama tornado. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr
Wisconsin–Madison, 165 pp. Snook , N. , and M. Xue , 2008 : Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms . Geophys. Res. Lett. , 35 , 851 – 854 , https://doi.org/10.1029/2008GL035866 . 10.1029/2008GL035866 Sobash , R. A. , G. S. Romine , C. S. Schwartz , D. J. Gagne , and M. L. Weisman , 2016 : Explicit forecasts of low-level rotation from convection-allowing models for next-day tornado prediction . Wea. Forecasting , 31 , 1591 – 1614
Wisconsin–Madison, 165 pp. Snook , N. , and M. Xue , 2008 : Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms . Geophys. Res. Lett. , 35 , 851 – 854 , https://doi.org/10.1029/2008GL035866 . 10.1029/2008GL035866 Sobash , R. A. , G. S. Romine , C. S. Schwartz , D. J. Gagne , and M. L. Weisman , 2016 : Explicit forecasts of low-level rotation from convection-allowing models for next-day tornado prediction . Wea. Forecasting , 31 , 1591 – 1614