Search Results

You are looking at 1 - 10 of 17 items for :

  • Forecasting techniques x
  • 12th International Precipitation Conference (IPC12) x
  • Refine by Access: All Content x
Clear All
Abby Stevens, Rebecca Willett, Antonios Mamalakis, Efi Foufoula-Georgiou, Alejandro Tejedor, James T. Randerson, Padhraic Smyth, and Stephen Wright

1. Introduction Seasonal prediction of regional hydroclimate is typically based on deterministic physical models or statistical techniques, yet both approaches exhibit limited predictive ability ( Wang et al. 2009 ; National Academies of Sciences, Engineering, and Medicine 2016 ). Precipitation predictions based on deterministic physical models (regional climate models) exhibit high uncertainty due to imperfect physical conceptualizations, sensitivity to initial and boundary conditions, and

Open access
Sarah Ringerud, Christa Peters-Lidard, Joe Munchak, and Yalei You

correlated to regional climate conditions. Subsequent versions of GPROF addressed this by constraining the TRMM (ocean only) GPROF retrievals by two environmental parameters, namely total precipitable water (TPW) and sea surface temperature (SST) ( Kummerow et al. 2011 ). Moving forward to GPM, these same techniques were adapted to land surfaces, by replacing the SST with the 2 m air temperature commonly available from forecast and reanalysis models. In a series of papers describing and testing the Cloud

Restricted access
Giuseppe Mascaro

several locations (e.g., Papalexiou and Koutsoyiannis 2013 ; Blanchet et al. 2016 ). If historical rainfall records are available at multiple sites, regional IDF curves are often generated by (i) spatially interpolating i ( T R , τ ) or parameters of the statistical distributions from local or at-site estimations, or (ii) applying regionalization techniques that merge rain gauges into homogeneous regions to increase robustness in the estimate of the statistical distribution parameters ( Hosking

Free access
Lisa Milani, Mark S. Kulie, Daniele Casella, Pierre E. Kirstetter, Giulia Panegrossi, Veljko Petkovic, Sarah E. Ringerud, Jean-François Rysman, Paolo Sanò, Nai-Yu Wang, Yalei You, and Gail Skofronick-Jackson

waters, coastlines, and sea ice edge. These classes come from a cluster analysis, purely empirical self-grouping of emissivity characteristics ( Prigent et al. 2006 ). The TPW and T2m parameters are obtained from the Global Atmospheric Analysis (GANAL; JMA 2000 ) and the European Centre for Medium-Range Weather Forecasts ( Dee et al. 2011 ) reanalysis datasets for the operational and the climatological GPROF outputs, respectively. For this study, the 1C-R-GMI product (TBs) and the climatological 2A

Restricted access
Alberto Ortolani, Francesca Caparrini, Samantha Melani, Luca Baldini, and Filippo Giannetti

they need the integration with other systems for applications requiring high quantitative precisions, or spatial scales of about 1 km or less, or measurement updated timely and more frequently than 5 min. These are, for instance, desirable temporal and spatial resolutions for nowcasting purposes in hydrology ( WMO 2017 ). This scenario suggests that new measurement techniques and new data merging strategies are needed to improve the rainfall estimation at local scales. Nonconventional techniques

Open access
Zhe Li, Daniel B. Wright, Sara Q. Zhang, Dalia B. Kirschbaum, and Samantha H. Hartke

algorithm (GPROF; Kummerow et al. 2001 , 2015 ), the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) family of products ( Ashouri et al. 2015 ; Hsu et al. 1997 ), and “cloud morphing”-based techniques such as the CPC morphing technique (CMORPH; Joyce et al. 2004 ; Xie et al. 2017 ), JAXA’s Global Satellite Mapping of Precipitation (GsMAP; Kubota et al. 2007 ), and NASA’s Integrated Multisatellite Retrievals for GPM (IMERG; Huffman et al. 2018

Restricted access
F. Joseph Turk, Sarah E. Ringerud, Yalei You, Andrea Camplani, Daniele Casella, Giulia Panegrossi, Paolo Sanò, Ardeshir Ebtehaj, Clement Guilloteau, Nobuyuki Utsumi, Catherine Prigent, and Christa Peters-Lidard

1. Introduction For many hydrological, climate, and weather forecasting applications, an important quantity is the amount of precipitation that falls on Earth’s surface over a given time interval, i.e., the surface precipitation rate. A fully global satellite-based precipitation estimate that can transition across changing Earth surface conditions and complex land–water boundaries is an important capability for proper evaluation of the precipitation produced or diagnosed in weather and climate

Restricted access
Phu Nguyen, Mohammed Ombadi, Vesta Afzali Gorooh, Eric J. Shearer, Mojtaba Sadeghi, Soroosh Sorooshian, Kuolin Hsu, David Bolvin, and Martin F. Ralph

progress in GEO sensor technologies along with the advancements in machine learning (ML) techniques, such as support vector machines, random forests, artificial neural network (ANN), deep learning, the new generation of precipitation retrieval algorithms must outperform the current operational products ( Meyer et al. 2016 ; Kuligowski et al. 2016 ; Sadeghi et al. 2019 ; Upadhyaya et al. 2020 ). In recent years, many studies have been conducted to utilize the generation sensor information to improve

Open access
Veljko Petković, Marko Orescanin, Pierre Kirstetter, Christian Kummerow, and Ralph Ferraro

. Combining both direct (gauges) and remote (radar/radiometer) measurement techniques, using ground and in-orbit observations complemented by the state-of-the-art atmosphere simulations, the GPM constellation offers full global coverage of rain and snow every 30 min at a resolution of only 0.1° and a latency of only a few hours. Freely available precipitation products are implemented across a spectrum of decision-making scientific tools, ranging from hydrology to world health. To ensure user demands for

Full access
Yingzhao Ma, V. Chandrasekar, Haonan Chen, and Robert Cifelli

the contribution of lateral terrestrial water flow on regionally hydrological cycle. Coupled with the height above nearest drainage (HAND) technique, the National Water Model (NWM) system with its core component as WRF-Hydro offers an operational framework for real-time and forecast flood guidance across the contiguous United States ( Johnson et al. 2019 ). As noted above, the WRF-Hydro system has been implemented for a wide range of research and operational prediction problems over the world

Restricted access