Search Results

You are looking at 1 - 10 of 41 items for :

  • Global Precipitation Measurement (GPM): Science and Applications x
  • Refine by Access: All Content x
Clear All
Thomas Stanley, Dalia B. Kirschbaum, George J. Huffman, and Robert F. Adler

/S from March 2014 to the present ( Huffman et al. 2015 ). Table 1. Summary of TRMM and GPM multisatellite products, resolutions, availability, and latency. The TRMM level-3 multisatellite product TMPA has a near-real-time version that is calibrated with a gauge climatology and a research product that uses a global network of gauges to calibrate the product. GPM level-3 IMERG has three versions: the early run is produced with a latency of 4–5 h after satellite acquisition, the late run uses more

Full access
Daniel J. Cecil and Themis Chronis

and Θ 89 from the literature have proven effective over the years. We reexamine them here because it has become convenient to apply our methods to vastly larger sample sizes than were used in the previous studies. Our optimal coefficients (producing the smallest contrast between land and water surfaces, and thus less ambiguity related to surface type) for PCT 37 and PCT 89 are slightly different from those that have already been widely used. Our analysis shows that a broad range of coefficient

Full access
Stephen E. Lang and Wei-Kuo Tao

pairs of rain-normalized convective and stratiform diabatic heating profiles [i.e., Q 1 or the apparent heat source; Yanai et al. (1973) ], one pair for land and one for ocean, obtained from composites of both GCE model ( Tao and Simpson 1993 ) simulations and sounding budget calculations; a single additional pair was later added for shallow heating. Using surface rainfall rates and the proportion of stratiform rain, cloud heating profiles could then be retrieved remotely from satellite or other

Full access
Xiang Ni, Chuntao Liu, and Edward Zipser

geographical distribution of median microphysical parameters at 12 km is shown in Fig. 8 . Consistent with high DFR values in Fig. 3b , values of D m over land are typically larger than those over ocean ( Fig. 8a ). G. M. Heymsfield et al. (2010) examined vertical updrafts of different types of tropical deep convection using airborne observations. Results showed that the maximum updrafts of continental convection are stronger than oceanic convection above 10 km. Figure 8 shows larger particle sizes

Full access
Veljko Petković, Christian D. Kummerow, David L. Randel, Jeffrey R. Pierce, and John K. Kodros

atmospheric column, the environmental parameters to be used as cloud morphology predictors in the a priori database are chosen to correspond to the time step preceding their coupled precipitation rates. f. Database The above datasets are grouped to build the a priori knowledge for GPROF retrieval. Each of 14 surface types is treated separately. Data count distributions of eight land surface classes occurring over the domain of this study are given in Fig. 3 as a function of TPW and 2-m temperature

Full access
Yalei You, S. Joseph Munchak, Christa Peters-Lidard, and Sarah Ringerud

radiometers on board the Soil Moisture Active Passive (SMAP) satellite and the Soil Moisture and Ocean Salinity (SMOS) satellite have a frequency of 1.4 GHz. The Advanced Scatterometer (ASCAT) on board the MetOp satellites operates at ~5.2 GHz. In contrast, the primary frequencies to measure the ice scattering over land from passive microwave radiometers are around 85 GHz and higher (e.g., 150 and 183 GHz). The lower frequencies used for soil moisture measurement can penetrate a thicker layer of soil and

Restricted access
Hooman Ayat, Jason P. Evans, Steven Sherwood, and Ali Behrangi

land radiation at higher frequencies (e.g., 85 GHz) is used though it is strongly affected by ice scattering near the top of the clouds. ( Petković and Kummerow 2017 ). IR sensors contributing to satellite precipitation products use the information of cloud-top temperature to estimate the surface precipitation. Thus, the top-down view of satellites leads to strong consideration of information in upper atmospheric levels to estimate surface rainfall potentially missing evaporation effects in PMW

Restricted access
Toshio Iguchi, Nozomi Kawamoto, and Riko Oki

estimate the particle size more accurately than a single-frequency radar so that we can improve the estimates of rainfall rate and identify snow precipitation regions. In fact, by using the difference in the scattering and attenuation properties of liquid and solid water particles between Ku- and Ka-band electromagnetic (EM) waves, it is possible to estimate the mean diameter of precipitation particles once an appropriate particle size distribution (PSD) model is chosen. Since the mean particle size

Open access
Yagmur Derin, Pierre-Emmanuel Kirstetter, and Jonathan J. Gourley

Abstract

As a fundamental water flux, quantitative understanding of precipitation is important to understand and manage water systems under a changing climate, especially in transition regions such as the coastal interface between land and ocean. This work aims to assess the uncertainty in precipitation detection over the land-coast-ocean continuum in the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) V06B. It is examined over three coastal regions of the U.S., i.e. the West Coast, the Gulf of Mexico, and the East Coast, each of which are characterized by different topographies and precipitation climatologies. Detection capabilities are contrasted over different surfaces (land, coast, ocean). A novel and integrated approach traces the IMERG detection performance back to its components (passive microwave, infrared, and morphing-based estimates). The analysis is performed by using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference. The best detection performances are reported with PMW estimates (hit rates in the range of [25-39]%), followed by morphing ([20-34]%), morphing+IR ([17-27]%) and IR ([11-16]%) estimates. Precipitation formation mechanisms play an important role, especially in the West Coast where orographic processes challenge detection. Further, precipitation typology is shown to be a strong driver of IMERG detection. Over the ocean, IMERG detection is generally better but suffers from false alarms ([10-53]%). Overall, IMERG displays nonhomogeneous precipitation detection capabilities tracing back to its components. Results point toward a similar behavior across various land-coast-ocean continuum regions of the CONUS, which suggests that results can be potentially transferred to other coastal regions of the world.

Restricted access
Wesley Berg, Stephen Bilanow, Ruiyao Chen, Saswati Datta, David Draper, Hamideh Ebrahimi, Spencer Farrar, W. Linwood Jones, Rachael Kroodsma, Darren McKague, Vivienne Payne, James Wang, Thomas Wilheit, and John Xun Yang

calibration differences corresponding to the coldest observable temperatures but also does not rely on the limited availability and regional distribution of coincident observations. c. Double differences over unpolarized vegetated land (window channel warm scenes) To determine sensor calibration differences for warm scenes, double differences were computed for depolarized areas in highly vegetated regions, such as the Amazon rain forest, using variations of the approach developed by Brown and Ruf (2005

Full access