Search Results

You are looking at 1 - 3 of 3 items for :

  • Langmuir circulation x
  • LatMix: Studies of Submesoscale Stirring and Mixing x
  • Refine by Access: All Content x
Clear All
Leif N. Thomas, John R. Taylor, Eric A. D’Asaro, Craig M. Lee, Jody M. Klymak, and Andrey Shcherbina

1. Introduction The ocean’s main frontal systems, the Gulf Stream, Kuroshio, and Antarctic Circumpolar Current, underlie the midlatitude westerlies. As a consequence, the strongest wind work on the ocean circulation is found in these regions ( Wunsch 1998 ). At the same time, the westerlies tend to lower the potential vorticity of the currents and make the fronts susceptible to symmetric instability (SI), an overturning instability that removes kinetic energy (KE) from the circulation ( Thomas

Full access
Daniel Mukiibi, Gualtiero Badin, and Nuno Serra

meaningful time interval should be long enough to cover the life span of the longest dynamics in the flow domain, ensuring that all the stirring influences of vortices and filaments are fully captured in the calculation of the FTLEs. 3. Numerical model A ML front in a channel configuration is here considered, using a numerical primitive equation model, the Massachusetts Institute of Technology General Circulation Model (MITgcm), in hydrostatic mode ( Marshall et al. 1997a , b ). A similar model

Full access
Angelique C. Haza, Tamay M. Özgökmen, Annalisa Griffa, Andrew C. Poje, and M.-Pascale Lelong

in section 5 . 2. Trajectory datasets a. Submesoscale-permitting ocean general circulation model HYCOM ° simulation is centered on the Gulf Stream and nested within a larger-scale ° North Atlantic simulation ( Fig. 1 ). The simulation is performed subject to atmospheric forcing based on monthly values from the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis, superimposed with 6-hourly anomalies from perpetual-year wind stress and wind speed data from the Navy

Full access