Search Results

You are looking at 1 - 10 of 16 items for :

  • Mesoscale forecasting x
  • RELAMPAGO-CACTI: High Impact Weather in Subtropical South America x
  • Refine by Access: All Content x
Clear All
Jeremiah O. Piersante, Russ. S. Schumacher, and Kristen L. Rasmussen

://doi.org/10.1175/JCLI-D-11-00130.1 . 10.1175/JCLI-D-11-00130.1 Clark , A. J. , W. A. Gallus Jr. , and T.-C. Chen , 2007 : Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models . Mon. Wea. Rev. , 135 , 3456 – 3473 , https://doi.org/10.1175/MWR3467.1 . 10.1175/MWR3467.1 Clark , A. J. , W. A. Gallus Jr. , M. Xue , and F. Kong , 2009 : A comparison of precipitation forecast skill between small convection-allowing and

Restricted access
T. Connor Nelson, James Marquis, Adam Varble, and Katja Friedrich

context of the surrounding mesoscale heterogeneity, and section 4 analyzes profiles deemed best representative of the near-cloud environment of successful and unsuccessful CI events. Summary and conclusions are presented in section 5 . 2. Data overview An ensemble of Weather Research and Forecasting (WRF) convection-allowing numerical models (CAMs), employing 3–4-km horizontal grid spacing, were run by various institutions participating in the project, including the Colorado State University (CSU

Restricted access
Zhixiao Zhang, Adam Varble, Zhe Feng, Joseph Hardin, and Edward Zipser

, S. S. , and W. M. Frank , 1993 : A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics . J. Atmos. Sci. , 50 , 2401 – 2426 , https://doi.org/10.1175/1520-0469(1993)050<2401:ANSOTG>2.0.CO;2 . 10.1175/1520-0469(1993)050<2401:ANSOTG>2.0.CO;2 Clarke , S. J. , S. L. Gray , and N. M. Roberts , 2019 : Downstream influence of mesoscale convective systems. Part 1: Influence on forecast evolution . Quart. J. Roy. Meteor. Soc. , 145

Restricted access
Jeremiah O. Piersante, Kristen L. Rasmussen, Russ S. Schumacher, Angela K. Rowe, and Lynn A. McMurdie

subtropical South America (SSA) are deeper and more frequent than those east of the Rocky Mountains in North America ( Zipser et al. 2006 ; Houze et al. 2015 ). Specifically, the cloud shields associated with SSA mesoscale convective systems (MCSs) are approximately 60% larger than those occurring in the continental United States (CONUS; Velasco and Fritsch 1987 ) and their precipitation areas are larger and longer lived ( Durkee et al. 2009 ; Durkee and Mote 2010 ), contributing up to ~95% of warm

Restricted access
Russ S. Schumacher, Deanna A. Hence, Stephen W. Nesbitt, Robert J. Trapp, Karen A. Kosiba, Joshua Wurman, Paola Salio, Martin Rugna, Adam C. Varble, and Nathan R. Kelly

significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments . Wea. Forecasting , 27 , 1136 – 1154 , https://doi.org/10.1175/WAF-D-11-00116.1 . 10.1175/WAF-D-11-00116.1 Trapp , R. J. , D. J. Stensrud , M. C. Coniglio , R. S. Schumacher , M. E. Baldwin , S. Waugh , and D. T. Conlee , 2016 : Mobile radiosonde deployments during the Mesoscale Predictability Experiment (MPEX): Rapid and adaptive sampling of upscale convective

Restricted access
Jake P. Mulholland, Stephen W. Nesbitt, Robert J. Trapp, and John M. Peters

observations of the early evolution of bow echoes . Wea. Forecasting , 19 , 727 – 734 , https://doi.org/10.1175/1520-0434(2004)019<0727:ROOTEE>2.0.CO;2 . 10.1175/1520-0434(2004)019<0727:ROOTEE>2.0.CO;2 Laing , A. G. , and J. M. Fritsch , 1997 : The global population of mesoscale convective complexes . Quart. J. Roy. Meteor. Soc. , 123 , 389 – 405 , https://doi.org/10.1002/qj.49712353807 . 10.1002/qj.49712353807 Letkewicz , C. E. , and M. D. Parker , 2011 : Impact of environmental

Free access
Stephen W. Nesbitt, Paola V. Salio, Eldo Ávila, Phillip Bitzer, Lawrence Carey, V. Chandrasekar, Wiebke Deierling, Francina Dominguez, Maria Eugenia Dillon, C. Marcelo Garcia, David Gochis, Steven Goodman, Deanna A. Hence, Karen A. Kosiba, Matthew R. Kumjian, Timothy Lang, Lorena Medina Luna, James Marquis, Robert Marshall, Lynn A. McMurdie, Ernani de Lima Nascimento, Kristen L. Rasmussen, Rita Roberts, Angela K. Rowe, Juan José Ruiz, Eliah F.M.T. São Sabbas, A. Celeste Saulo, Russ S. Schumacher, Yanina Garcia Skabar, Luiz Augusto Toledo Machado, Robert J. Trapp, Adam C. Varble, James Wilson, Joshua Wurman, Edward J. Zipser, Ivan Arias, Hernán Bechis, and Maxwell A. Grover

this end, University of Illinois (UI), CSU, Universidad de Buenos Aires (UBA), and SMN provided convection-permitting regional and global variable resolution runs over the RELAMPAGO region to supplement global numerical guidance. SMN and Centro de Investigaciones del Mar y la Atmósfera (UBA) implemented a mesoscale ensemble-based data assimilation and forecast system on NCAR’s Cheyenne supercomputer, which fostered the operational implementation of this system at SMN. Since briefings used for

Full access
James N. Marquis, Adam C. Varble, Paul Robinson, T. Connor Nelson, and Katja Friedrich

. This work was aided by an undergraduate research assistant at the University of Colorado, Thomas Jarman. Data availability statement Data utilized are available on NCAR’s Earth Observing Laboratory and ARM’s Data Discovery catalogs. REFERENCES Alexander , L. S. , D. M. Sills , and P. A. Taylor , 2018 : Initiation of convective storms at low-level mesoscale boundaries in southwestern Ontario . Wea. Forecasting , 33 , 583 – 598 , https://doi.org/10.1175/WAF-D-17-0086.1 . 10.1175/WAF-D-17

Open access
Sujan Pal, Francina Dominguez, María Eugenia Dillon, Javier Alvarez, Carlos Marcelo Garcia, Stephen W. Nesbitt, and David Gochis

1. Introduction Some of the world’s deepest and largest convective storms develop at the foothills of the Sierras de Córdoba (SDC), a 2000-m north–south mountain range, east of the Andes, located in central Argentina ( Zipser et al. 2006 ). These intense and frequent convective storms organize into mesoscale convective systems (MCSs) and then travel toward the eastern part of Argentina ( Salio et al. 2002 , 2007 ; Rasmussen and Houze 2011 ; Rasmussen et al. 2014 ; Vidal 2014 ; Mulholland

Restricted access
Adam C. Varble, Stephen W. Nesbitt, Paola Salio, Joseph C. Hardin, Nitin Bharadwaj, Paloma Borque, Paul J. DeMott, Zhe Feng, Thomas C. J. Hill, James N. Marquis, Alyssa Matthews, Fan Mei, Rusen Öktem, Vagner Castro, Lexie Goldberger, Alexis Hunzinger, Kevin R. Barry, Sonia M. Kreidenweis, Greg M. McFarquhar, Lynn A. McMurdie, Mikhail Pekour, Heath Powers, David M. Romps, Celeste Saulo, Beat Schmid, Jason M. Tomlinson, Susan C. van den Heever, Alla Zelenyuk, Zhixiao Zhang, and Edward J. Zipser

used global numerical weather prediction and regional convection-allowing model guidance that was run every 6–12 h by SMN, the University of Illinois, and Colorado State University (CSU). When deep convection was forecasted, AMF1 radiosonde launch frequency was increased from 4- to 3-hourly between 0900 and 2100 LT. Additional sondes were also occasionally launched from the Villa Dolores site. In addition, Geostationary Operational Environmental Satellite-16 ( GOES-16 ) mesoscale domain sectors

Full access