Search Results

You are looking at 1 - 4 of 4 items for :

  • Planetary waves x
  • Journal of Atmospheric and Oceanic Technology x
  • 16th International Symposium for the Advancement of Boundary-Layer Remote Sensing (ISARS 2012) x
  • Refine by Access: All Content x
Clear All
Valery M. Melnikov, Richard J. Doviak, Dusan S. Zrnić, and David J. Stensrud

. , 132 , 495 – 518 . Bright, D. R. , and Mullen S. L. , 2002 : Short-range ensemble forecasts of precipitation during the Southwest monsoon . Wea. Forecasting , 17 , 1080 – 1100 . Doviak, R. J. , and Berger M. J. , 1980 : Turbulence and waves in the optically clear planetary boundary layer . Radio Sci. , 15 , 297 – 317 . Doviak, R. J. , and Zrnić D. S. , 2006 : Doppler Radar and Weather Observations. 2nd ed. Dover Publications, 562 pp. Elmore, K. L. , Heinselman P. L

Full access
C. R. Wood, R. D. Kouznetsov, R. Gierens, A. Nordbo, L. Järvi, M. A. Kallistratova, and J. Kukkonen

1. Introduction The scintillometry method is based on atmospheric refraction. For optical waves, the refraction is dominated by atmospheric temperature fluctuations, so one can confidently obtain the structure parameter of temperature . The understanding of itself is important for astronomical seeing and ground-to-satellite communications ( Travouillon et al. 2003 ; Tunick 2005 ), as well as understanding turbulence itself ( Coulter and Doran 2002 ). But the emphasis in scintillometer

Full access
Jacob Berg, Jakob Mann, and Edward G. Patton

-Chen, T. , Xu M. , and Eberhard W. L. , 1992 : Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data . J. Geophys. Res. , 97 ( D17 ), 18 409 – 18 423 . Grachev, A. A. , Fairall C. W. , Hare J. E. , Edson J. B. , and Miller S. D. , 2003 : Wind stress vector over ocean waves . J. Phys. Oceanogr. , 33 , 2408 – 2429 . Lothon, M. , Lenschow D. H. , and Mayor S. D. , 2009 : Doppler lidar measurements of vertical velocity

Full access
A. B. White, M. L. Anderson, M. D. Dettinger, F. M. Ralph, A. Hinojosa, D. R. Cayan, R. K. Hartman, D. W. Reynolds, L. E. Johnson, T. L. Schneider, R. Cifelli, Z. Toth, S. I. Gutman, C. W. King, F. Gehrke, P. E. Johnston, C. Walls, D. Mann, D. J. Gottas, and T. Coleman

frequency modulated–continuous wave (FM–CW) radar operating at 10-cm wavelength for this project ( Johnston et al. 2012 ). Instead of transmitting a pulsed signal, the FM–CW radar transmits continuously, which requires separate antennas to transmit and receive so the transmitter does not saturate the receiver. The range of the targets is determined by changing the transmitted frequency during the observations. When the echoes are received, the frequency is measured and converted into range. Constant

Full access