Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Balwinder-Singh x
  • User-accessible content x
Clear All Modify Search
Yang Yang, Lynn M. Russell, Sijia Lou, Maryam A. Lamjiri, Ying Liu, Balwinder Singh, and Steven J. Ghan


Two 150-yr preindustrial simulations with and without interactive sea salt emissions from the Community Earth System Model (CESM) are performed to quantify the interactions between sea salt emissions and El Niño–Southern Oscillation (ENSO). Variations in sea salt emissions over the tropical Pacific Ocean are affected by changing wind speed associated with ENSO variability. ENSO-induced interannual variations in sea salt emissions result in decreasing (increasing) aerosol optical depth (AOD) by 0.03 over the equatorial central-eastern (western) Pacific Ocean during El Niño events compared to those during La Niña events. These changes in AOD further increase (decrease) radiative fluxes into the atmosphere by +0.2 (−0.4) W m−2 over the tropical eastern (western) Pacific. Thereby, sea surface temperature increases (decreases) by 0.2–0.4 K over the tropical eastern (western) Pacific Ocean during El Niño compared to La Niña events and enhances ENSO variability by 10%. The increase in ENSO amplitude is a result of systematic heating (cooling) during the warm (cold) phase of ENSO in the eastern Pacific. Interannual variations in sea salt emissions then produce the anomalous ascent (subsidence) over the equatorial eastern (western) Pacific between El Niño and La Niña events, which is a result of heating anomalies. Owing to variations in sea salt emissions, the convective precipitation is enhanced by 0.6–1.2 mm day−1 over the tropical central-eastern Pacific Ocean and weakened by 0.9–1.5 mm day−1 over the Maritime Continent during El Niño compared to La Niña events, enhancing the precipitation variability over the tropical Pacific.

Full access
Danielle Newport, David B. Lobell, Balwinder-Singh, Amit K. Srivastava, Preeti Rao, Maanya Umashaanker, Ram K. Malik, Andrew McDonald, and Meha Jain


Climate change is predicted to negatively impact wheat yields across northern India, primarily as a result of increased heat stress during grain filling at the end of the growing season. One way that farmers may adapt is by sowing their wheat earlier to avoid this terminal heat stress. However, many farmers in the eastern Indo-Gangetic Plains (IGP) sow their wheat later than is optimal, likely leading to yield reductions. There is limited documentation of why farmers sow their wheat late and the potential constraints to early sowing. Our study uses data from 256 farmers in Arrah, Bihar, a region in the eastern IGP with late wheat sowing, to identify the socioeconomic, biophysical, perceptional, and management factors influencing wheat-sowing-date decisions. Despite widespread awareness of climate change, we found that farmers did not adopt strategies to adapt to warming temperatures and that wheat-sowing dates were not influenced by perceptions of climate change. Instead, we found that the most important factors influencing wheat-sowing-date decisions were irrigation type and cropping decisions during the monsoon season prior to the winter wheat growing season. Specifically, we found that using canal irrigation instead of groundwater irrigation, planting rice in the monsoon season, transplanting rice, and transplanting rice later during the monsoon season were all associated with delayed wheat sowing. These results suggest that there are system constraints to sowing wheat on time, and these factors must be addressed if farmers are to adapt wheat-sowing-date decisions in the face of warming temperatures.

Restricted access