Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Daniel L. Birkenheuer x
  • User-accessible content x
Clear All Modify Search
Steven C. Albers, John A. McGinley, Daniel L. Birkenheuer, and John R. Smart

Abstract

The Local Analysis and Prediction System combines numerous data sources into a set of analyses and forecasts on a 10-km grid with high temporal resolution. To arrive at an analysis of cloud cover, several input analyses are combined with surface aviation observations and pilot reports of cloud layers. These input analyses am a skin temperature analysis (used to solve for cloud layer heights and coverage) derived from Geostationary Operational Environmental Satellite IR 11.24-µm data, other visible and multispectral imagery, a three-dimensional temperature analysis, and a three-dimensional radar reflectivity analysis derived from full volumetric radar data. Use of a model first guess for clouds is currently being phased in. The goal is to combine the data sources to take advantage of their strengths, thereby automating the synthesis similar to that of a human forecaster.

The design of the analysis procedures and output displays focuses on forecaster utility. A number of derived fields are calculated including cloud type, liquid water content, ice content, and icing severity, as well as precipitation type, concentration, and accumulation. Results from validating the cloud fields against independent data obtained during the Winter Icing and Storms Project are presented.

Forecasters can now make use of these analyses in a variety of situations, such as depicting sky cover and radiation characteristics over a region, three-dimensionally delineating visibility and icing conditions for aviation, depicting precipitation type, rain and snow accumulation, etc.

Full access
Christopher A. Hiemstra, Glen E. Liston, Roger A. Pielke Sr., Daniel L. Birkenheuer, and Steven C. Albers

Abstract

Meteorological forcing data are necessary to drive many of the spatial models used to simulate atmospheric, biological, and hydrological processes. Unfortunately, many domains lack sufficient meteorological data and available point observations are not always suitable or reliable for landscape or regional applications. NOAA’s Local Analysis and Prediction System (LAPS) is a meteorological assimilation tool that employs available observations (meteorological networks, radar, satellite, soundings, and aircraft) to generate a spatially distributed, three-dimensional representation of atmospheric features and processes. As with any diagnostic representation, it is important to ascertain how LAPS outputs deviate from a variety of independent observations. A number of surface observations exist that are not used in the LAPS system, and they were employed to assess LAPS surface state variable and precipitation analysis performance during two consecutive years (1 September 2001–31 August 2003). LAPS assimilations accurately depicted temperature and relative humidity values. The ability of LAPS to represent wind speed was satisfactory overall, but accuracy declined with increasing elevation. Last, precipitation estimates performed by LAPS were irregular and reflected inherent difficulties in measuring and estimating precipitation.

Full access
Glen E. Liston, Daniel L. Birkenheuer, Christopher A. Hiemstra, Donald W. Cline, and Kelly Elder

Abstract

This paper describes the Local Analysis and Prediction System (LAPS) and the 20-km horizontal grid version of the Rapid Update Cycle (RUC20) atmospheric analyses datasets, which are available as part of the Cold Land Processes Field Experiment (CLPX) data archive. The LAPS dataset contains spatially and temporally continuous atmospheric and surface variables over Colorado, Wyoming, and parts of the surrounding states. The analysis used a 10-km horizontal grid with 21 vertical levels and an hourly temporal resolution. The LAPS archive includes forty-six 1D surface fields and nine 3D upper-air fields, spanning the period 1 September 2001 through 31 August 2003. The RUC20 dataset includes hourly 3D atmospheric analyses over the contiguous United States and parts of southern Canada and northern Mexico, with 50 vertical levels. The RUC20 archive contains forty-six 1D surface fields and fourteen 3D upper-air fields, spanning the period 1 October 2002 through 31 September 2003. The datasets are archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.

Full access
Isidora Jankov, Lewis D. Grasso, Manajit Sengupta, Paul J. Neiman, Dusanka Zupanski, Milija Zupanski, Daniel Lindsey, Donald W. Hillger, Daniel L. Birkenheuer, Renate Brummer, and Huiling Yuan

Abstract

The main purpose of the present study is to assess the value of synthetic satellite imagery as a tool for model evaluation performance in addition to more traditional approaches. For this purpose, synthetic GOES-10 imagery at 10.7 μm was produced using output from the Advanced Research Weather Research and Forecasting (ARW-WRF) numerical model. Use of synthetic imagery is a unique method to indirectly evaluate the performance of various microphysical schemes available within the ARW-WRF. In the present study, a simulation of an atmospheric river event that occurred on 30 December 2005 was used. The simulations were performed using the ARW-WRF numerical model with five different microphysical schemes [Lin, WRF single-moment 6 class (WSM6), Thompson, Schultz, and double-moment Morrison]. Synthetic imagery was created and scenes from the simulations were statistically compared with observations from the 10.7-μm band of the GOES-10 imager using a histogram-based technique. The results suggest that synthetic satellite imagery is useful in model performance evaluations as a complementary metric to those used traditionally. For example, accumulated precipitation analyses and other commonly used fields in model evaluations suggested a good agreement among solutions from various microphysical schemes, while the synthetic imagery analysis pointed toward notable differences in simulations of clouds among the microphysical schemes.

Full access
Edward I. Tollerud, Fernando Caracena, Steven E. Koch, Brian D. Jamison, R. Michael Hardesty, Brandi J. McCarty, Christoph Kiemle, Randall S. Collander, Diana L. Bartels, Steven Albers, Brent Shaw, Daniel L. Birkenheuer, and W. Alan Brewer

Abstract

Previous studies of the low-level jet (LLJ) over the central Great Plains of the United States have been unable to determine the role that mesoscale and smaller circulations play in the transport of moisture. To address this issue, two aircraft missions during the International H2O Project (IHOP_2002) were designed to observe closely a well-developed LLJ over the Great Plains (primarily Oklahoma and Kansas) with multiple observation platforms. In addition to standard operational platforms (most important, radiosondes and profilers) to provide the large-scale setting, dropsondes released from the aircraft at 55-km intervals and a pair of onboard lidar instruments—High Resolution Doppler Lidar (HRDL) for wind and differential absorption lidar (DIAL) for moisture—observed the moisture transport in the LLJ at greater resolution. Using these observations, the authors describe the multiscalar structure of the LLJ and then focus attention on the bulk properties and effects of scales of motion by computing moisture fluxes through cross sections that bracket the LLJ. From these computations, the Reynolds averages within the cross sections can be computed. This allow an estimate to be made of the bulk effect of integrated estimates of the contribution of small-scale (mesoscale to convective scale) circulations to the overall transport. The performance of the Weather Research and Forecasting (WRF) Model in forecasting the intensity and evolution of the LLJ for this case is briefly examined.

Full access