Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Hao-Yan Liu x
  • User-accessible content x
Clear All Modify Search
Hao-Yan Liu and Zhe-Min Tan


This paper reports on a dynamical initialization scheme for binary vortices (BVDI) that was developed to improve the initial conditions supplied to the models used to forecast binary tropical cyclones (TCs). For binary TCs, one TC can be regarded as the environment for the other TC’s development. Based on the dynamical initialization scheme for a single vortex (SVDI), a specified multistep iteration of SVDI was introduced in the BVDI scheme to ensure that each TC develops under conditions of realistic binary vortices interaction during the 6-h cycle run. In the BVDI scheme, each TC is initialized twice within a continuously adjusted environmental flow. Four clusters of forecast simulations with different initial conditions were run for 11 pairs of binary TCs over the northwest Pacific. The forecasts of binary TCs by the BVDI scheme reduced the position and intensity errors associated with the forecast TCs by 35.2% and 56.6%, respectively, compared with those without initialization, and also performed better than the direct extension of the SVDI scheme to binary TCs. The representation of binary vortices interaction will need to be improved for initialization and future forecasts of binary TCs.

Full access
Hao-Yan Liu, Yuqing Wang, Jing Xu, and Yihong Duan


This study extends an earlier dynamical initialization (DI) scheme for tropical cyclones (TCs) to situations under the influence of terrain. When any terrain lower than 1 km exists between 150 and 450 km from the TC center, topographic variables are defined and a filtering algorithm is used to remove noise due to the presence of terrain before the vortex separation is conducted. When any terrain higher than 1 km exists between 150 and 300 km from the TC center, or the TC center is within 150 km of land, a semi-idealized integration without the terrain is conducted to spin up an axisymmetric TC vortex before the inclusion of the terrain and the merging of the TC vortex with the large-scale analysis field. In addition, a procedure for the vortex size/intensity adjustment is introduced to reduce the initial errors before the forecast run. Two sets of hindcasts, one without (CTRL run) and one with the new DI scheme (DI run), are conducted for nine TCs affected by terrain over the western North Pacific in 2015. Results show that the new DI scheme largely reduces the initial position and intensity errors. The 72-h position errors and the intensity errors up to the 36-h forecasts are smaller in DI runs than in CTRL runs and smaller than those from the HWRF forecasts for the same TCs as well. The new DI scheme is also shown to produce the TC inner-core structure and rainbands more consistent with satellite and radar observations.

Full access
Guomei Wei, Zhigang He, Yanshuang Xie, Shaoping Shang, Hao Dai, Jingyu Wu, Ke Liu, Rui Lin, Yan Wan, Hang Lin, Jinrui Chen, and Yan Li


Two Ocean State Monitoring and Analyzing Radar (OSMAR071) (7.8 MHz) high-frequency (HF) radars and four moored ADCPs were operated concurrently in the southwestern Taiwan Strait during January–March 2013. Qualitative and quantitative comparisons of surface currents were conducted between the HF radars and the ADCPs. Except for a location probably affected by shallow water and sand waves on the Taiwan Banks, the HF-radar-derived radial currents (radials) showed good agreement with the ADCP measured results (correlation coefficient: 0.89–0.98; rms difference: 0.07–0.13 m s−1). To provide further insight into the geophysical processes involved, the performance of the HF-radar-derived radials was further evaluated under different sea states (sea states: 2–6). It was found that both the data returns of the radar-derived radials and the differences between the radar-derived radials and the ADCP-derived radials varied with sea state. The HF radar performed best at sea state 4 in terms of data returns. The spatial coverage increased rapidly as the waves increased from sea state 2 to 4. However, it decreased slowly from sea state 4 to 6. Second, the radial differences were relatively high under lower sea states (2 and 3) at the location where the best agreement was obtained between the radar and ADCP radials, whereas the differences increased as the sea states increased at the other three locations. The differences between the radials measured by the HF radars and the ADCPs could be attributed to wave-induced Stokes drift and spatial sampling differences.

Restricted access
Ping Zhao, Xiangde Xu, Fei Chen, Xueliang Guo, Xiangdong Zheng, Liping Liu, Yang Hong, Yueqing Li, Zuo La, Hao Peng, Linzhi Zhong, Yaoming Ma, Shihao Tang, Yimin Liu, Huizhi Liu, Yaohui Li, Qiang Zhang, Zeyong Hu, Jihua Sun, Shengjun Zhang, Lixin Dong, Hezhen Zhang, Yang Zhao, Xiaolu Yan, An Xiao, Wei Wan, Yu Liu, Junming Chen, Ge Liu, Yangzong Zhaxi, and Xiuji Zhou


This paper presents the background, scientific objectives, experimental design, and preliminary achievements of the Third Tibetan Plateau (TP) Atmospheric Scientific Experiment (TIPEX-III) for 8–10 years. It began in 2013 and has expanded plateau-scale observation networks by adding observation stations in data-scarce areas; executed integrated observation missions for the land surface, planetary boundary layer, cloud–precipitation, and troposphere–stratosphere exchange processes by coordinating ground-based, air-based, and satellite facilities; and achieved noticeable progress in data applications. A new estimation gives a smaller bulk transfer coefficient of surface sensible heat over the TP, which results in a reduction of the possibly overestimated heat intensity found in previous studies. Summer cloud–precipitation microphysical characteristics and cloud radiative effects over the TP are distinguished from those over the downstream plains. Warm rain processes play important roles in the development of cloud and precipitation over the TP. The lower-tropospheric ozone maximum over the northeastern TP is attributed to the regional photochemistry and long-range ozone transports, and the heterogeneous chemical processes of depleting ozone near the tropopause might not be a dominant mechanism for the summer upper-tropospheric–lower-stratospheric ozone valley over the southeastern TP. The TP thermodynamic function not only affects the local atmospheric water maintenance and the downstream precipitation and haze events but also modifies extratropical atmospheric teleconnections like the Asia–Pacific Oscillation, subtropical anticyclones over the North Pacific and Atlantic, and temperature and precipitation over Africa, Asia, and North America. These findings provide new insights into understanding land–atmosphere coupled processes over the TP and their effects, improving model parameterization schemes, and enhancing weather and climate forecast skills.

Open access