Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Josephine R. Brown x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Josephine R. Brown, Aurel F. Moise, Robert Colman, and Huqiang Zhang

Abstract

Multimodel mean projections of the Australian summer monsoon show little change in precipitation in a future warmer climate, even under the highest emission scenario. However, there is large uncertainty in this projection, with model projections ranging from around a 40% increase to a 40% decrease in summer monsoon precipitation. To understand the source of this model uncertainty, a set of 33 climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) is divided into groups based on their future precipitation projections (DRY, MID, and WET terciles). The DRY model mean has enhanced sea surface temperature (SST) warming across the equatorial Pacific, with maximum increases in precipitation in the western equatorial Pacific. The DRY model mean also has a large cold bias in present day SSTs in this region. The WET model mean has the largest warming in the central and eastern equatorial Pacific, with precipitation increases over much of Australia. These results suggest lower confidence for projections of reduced monsoon precipitation because of the influence of model SST biases on the SST warming pattern and precipitation response. The precipitation changes for the DRY and WET models are also decomposed into dynamic and thermodynamic components. The component due to spatial shifts in the location of convergence and precipitation is responsible for most of the difference between DRY and WET models. As spatial shifts in precipitation are closely associated with patterns of SST change, reducing uncertainty in model SST warming patterns will be crucial to improved projections of Australian monsoon precipitation.

Full access
Josephine R. Brown, Christian Jakob, and John M. Haynes

Abstract

Observed regional rainfall characteristics can be analyzed by examining both the frequency and intensity of different categories of rainfall. A complementary approach is to consider rainfall characteristics associated with regional synoptic regimes. These two approaches are combined here to examine daily rainfall characteristics over the Australian region, providing a target for model simulations. Using gridded daily rainfall data for the period 1997–2007, rainfall at each grid point and averaged over several sites is decomposed into the frequency of rainfall events and the intensity of rainfall associated with each event. Daily sea level pressure is classified using a self-organizing map, and rainfall on corresponding days is assigned to the resulting synoptic regimes. This technique is then used to evaluate rainfall in the new Australian Community Climate and Earth-System Simulator (ACCESS) global climate model and separate the influence of large-scale circulation errors and errors due to the representation of subgrid-scale physical processes. The model exhibits similar biases to many other global climate models, simulating too frequent light rainfall and heavy rainfall of insufficient intensity. These errors are associated with particular synoptic regimes over different sectors of the Australian continent and surrounding oceans. The model simulates only weak convective rainfall over land during the summer monsoon, and heavy rainfall associated with frontal systems over southern Australia is also not simulated. As the model captures the structure and frequency of synoptic patterns, but not the associated rainfall intensity or frequency, it is likely that the source of the rainfall errors lies in model physical parameterizations rather than large-scale dynamics.

Full access
Mandy B. Freund, Josephine R. Brown, Benjamin J. Henley, David J. Karoly, and Jaclyn N. Brown

Abstract

Given the consequences and global significance of El Niño–Southern Oscillation (ENSO) events it is essential to understand the representation of El Niño diversity in climate models for the present day and the future. In recent decades, El Niño events have occurred more frequently in the central Pacific (CP). Eastern Pacific (EP) El Niño events have increased in intensity. However, the processes and future implications of these observed changes in El Niño are not well understood. Here, the frequency and intensity of El Niño events are assessed in models from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6), and results are compared to extended instrumental and multicentury paleoclimate records. Future changes of El Niño are stronger for CP events than for EP events and differ between models. Models with a projected La Niña–like mean-state warming pattern show a tendency toward more EP but fewer CP events compared to models with an El Niño–like warming pattern. Among the models with more El Niño–like warming, differences in future El Niño can be partially explained by Pacific decadal variability (PDV). During positive PDV phases, more El Niño events occur, so future frequency changes are mainly determined by projected changes during positive PDV phases. Similarly, the intensity of El Niño is strongest during positive PDV phases. Future changes to El Niño may thus depend on both mean-state warming and decadal-scale natural variability.

Free access
Michael R. Grose, Jonas Bhend, Sugata Narsey, Alex Sen Gupta, and Josephine R. Brown

Abstract

Climate warming has large implications for rainfall patterns, and identifying the most plausible pattern of rainfall change over the next century among various model projections would be valuable for future planning. The spatial pattern of projected sea surface temperature change has a key influence on rainfall changes in the tropical Pacific Ocean. Here it is shown that simple indices of the size of the equatorial peak in the spatial pattern of warming and to a lesser extent the hemispheric asymmetry in warming are useful for classifying the surface temperature change in different models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Models with a more pronounced equatorial warming show a fairly distinct rainfall response compared to those with more uniform warming, including a greater “warmer-get-wetter” or dynamical response, whereby rainfall increases follow the surface warming anomaly. Models with a more uniform warming pattern project a smaller rainfall increase at the equator and a rainfall increase in the southern tropical Pacific, a pattern that is distinct from the multimodel mean of CMIP5. Thus, the magnitude of enhanced equatorial warming and to some extent the hemispheric asymmetry in warming provides a useful framework for constraining rainfall projections. While there is not a simple emergent constraint for enhanced equatorial warming in models in terms of past trends or bias in the current climate, further understanding of the various feedbacks involved in these features could lead to a useful constraint of rainfall for the Pacific region.

Full access
Roberta D’Agostino, Josephine R. Brown, Aurel Moise, Hanh Nguyen, Pedro L. Silva Dias, and Johann Jungclaus

Abstract

Past changes of Southern Hemisphere (SH) monsoons are less investigated than their northern counterpart because of relatively scarce paleodata. In addition, projections of SH monsoons are less robust than in the Northern Hemisphere. Here, we use an energetic framework to shed lights on the mechanisms determining SH monsoonal response to external forcing: precession change at the mid-Holocene versus future greenhouse gas increase (RCP8.5). Mechanisms explaining the monsoon response are investigated by decomposing the moisture budget in thermodynamic and dynamic components. SH monsoons weaken and contract in the multimodel mean of midHolocene simulations as a result of decreased net energy input and weakening of the dynamic component. In contrast, SH monsoons strengthen and expand in the RCP8.5 multimodel mean, as a result of increased net energy input and strengthening of the thermodynamic component. However, important regional differences on monsoonal precipitation emerge from the local response of Hadley and Walker circulations. In the midHolocene, the combined effect of Walker–Hadley changes explains the land–ocean precipitation contrast. Conversely, the increased local gross moist stability explains the increased local precipitation and net energy input under circulation weakening in RCP8.5.

Open access
Josephine R. Brown, Scott B. Power, Francois P. Delage, Robert A. Colman, Aurel F. Moise, and Bradley F. Murphy

Abstract

Understanding how the South Pacific convergence zone (SPCZ) may change in the future requires the use of global coupled atmosphere–ocean models. It is therefore important to evaluate the ability of such models to realistically simulate the SPCZ. The simulation of the SPCZ in 24 coupled model simulations of the twentieth century is examined. The models and simulations are those used for the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The seasonal climatology and interannual variability of the SPCZ is evaluated using observed and model precipitation. Twenty models simulate a distinct SPCZ, while four models merge intertropical convergence zone and SPCZ precipitation. The majority of models simulate an SPCZ with an overly zonal orientation, rather than extending in a diagonal band into the southeast Pacific as observed. Two-thirds of models capture the observed meridional displacement of the SPCZ during El Niño and La Niña events. The four models that use ocean heat flux adjustments simulate a better tropical SPCZ pattern because of a better representation of the Pacific sea surface temperature pattern and absence of cold sea surface temperature biases on the equator. However, the flux-adjusted models do not show greater skill in simulating the interannual variability of the SPCZ. While a small subset of models does not adequately reproduce the climatology or variability of the SPCZ, the majority of models are able to capture the main features of SPCZ climatology and variability, and they can therefore be used with some confidence for future climate projections.

Full access
Steven J. Phipps, Helen V. McGregor, Joëlle Gergis, Ailie J. E. Gallant, Raphael Neukom, Samantha Stevenson, Duncan Ackerley, Josephine R. Brown, Matt J. Fischer, and Tas D. van Ommen

Abstract

The past 1500 years provide a valuable opportunity to study the response of the climate system to external forcings. However, the integration of paleoclimate proxies with climate modeling is critical to improving the understanding of climate dynamics. In this paper, a climate system model and proxy records are therefore used to study the role of natural and anthropogenic forcings in driving the global climate. The inverse and forward approaches to paleoclimate data–model comparison are applied, and sources of uncertainty are identified and discussed. In the first of two case studies, the climate model simulations are compared with multiproxy temperature reconstructions. Robust solar and volcanic signals are detected in Southern Hemisphere temperatures, with a possible volcanic signal detected in the Northern Hemisphere. The anthropogenic signal dominates during the industrial period. It is also found that seasonal and geographical biases may cause multiproxy reconstructions to overestimate the magnitude of the long-term preindustrial cooling trend. In the second case study, the model simulations are compared with a coral δ 18O record from the central Pacific Ocean. It is found that greenhouse gases, solar irradiance, and volcanic eruptions all influence the mean state of the central Pacific, but there is no evidence that natural or anthropogenic forcings have any systematic impact on El Niño–Southern Oscillation. The proxy climate relationship is found to change over time, challenging the assumption of stationarity that underlies the interpretation of paleoclimate proxies. These case studies demonstrate the value of paleoclimate data–model comparison but also highlight the limitations of current techniques and demonstrate the need to develop alternative approaches.

Full access