Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Lei Han x
  • User-accessible content x
Clear All Modify Search
Lei Han

Abstract

The meridional overturning circulation (MOC) seasonality in the Indian Ocean is investigated with the ocean state estimate product ECCO v4r3. The vertical movements of water parcels are predominantly due to the heaving of the isopycnals all over the basin except off the western coast. Aided by the linear propagation equation of long baroclinic Rossby waves, the driving factor determining the strength of the seasonal MOC in the Indian Ocean is identified as the zonally integrated Ekman pumping anomaly, rather than the Ekman transport concluded in earlier studies. A new concept of sloshing MOC is proposed, and its difference with the classic Eulerian MOC leads to the so-called diapycnal MOC. The striking resemblance of the Eulerian and sloshing MOCs implies the seasonal variation of the Eulerian MOC in the Indian Ocean is a sloshing mode. The shallow overturning cells manifest themselves in the diapycnal MOC as the most remarkable structure. New perspectives on the upwelling branch of the shallow overturn in the Indian Ocean are offered based on diapycnal vertical velocity. The discrepancy among the observation-based estimates on the bottom inflow across 32°S of the basin is interpreted with the seasonal sloshing mode. Consequently, the “missing mixing” in the deep Indian Ocean is attributed to the overestimated diapycnal volume fluxes. Decomposition of meridional heat transport (MHT) into sloshing and diapycnal components clearly shows the dominant mechanism of MHT in the Indian Ocean in various seasons.

Open access
Lei Han and Rui Xin Huang

Abstract

The zonally integrated flow in a basin can be separated into the divergent/nondivergent parts, and a uniquely defined meridional overturning circulation (MOC) can be calculated. For a basin with significant volume exchange at zonal open boundaries, this method is competent in removing the components associated with the nonzero source terms due to zonal transports at open boundaries. This method was applied to the zonally integrated flow in the Indian Ocean basin extended all the way to the Antarctic by virtue of the ECCO dataset. The contributions due to two major zonal flow systems at open boundaries, the Indonesian Throughflow (ITF) and the Antarctic Circumpolar Current (ACC), were well separated from the rotational flow component, and a nondivergent overturning circulation pattern was identified. Comparisons with previous studies on the MOC of the Indian Ocean in different seasons showed overall consistency but with refinements in details to the south of the entry of the ITF, reflecting the influence of ITF on the MOC pattern in the domain. Other options of decomposition are also examined.

Free access
Lei Zhang, Weiqing Han, and Frank Sienz

Abstract

Observations show that decadal (10–20 yr) to interdecadal (>20 yr) variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) closely follows that of the Pacific until the 1960s. Since then, the TIO SST exhibits a persistent warming trend, whereas the Pacific SST shows large-amplitude fluctuations associated with the interdecadal Pacific oscillation (IPO), and the decadal variability of the TIO SST is out of phase with that of the Pacific after around 1980. Here causes for the changing behavior of the TIO SST are explored, by analyzing multiple observational datasets and the recently available large-ensemble simulations from two climate models. It is found that on interdecadal time scales, the persistent TIO warming trend is caused by emergence of anthropogenic warming overcoming internal variability, while the time of emergence occurs much later in the Pacific. On decadal time scales, two major tropical volcanic eruptions occurred in the 1980s and 1990s causing decadal SST cooling over the TIO during which the IPO was in warm phase, yielding the out-of-phase relation. The more evident fingerprints of external forcing in the TIO compared to the Pacific result from the much weaker TIO internal decadal–interdecadal variability, making the TIO prone to the external forcing. These results imply that the ongoing warming and natural external forcing may make the Indian Ocean more active, playing an increasingly important role in affecting regional and global climate.

Full access
Dejun Dai, Fangli Qiao, Wojciech Sulisz, Lei Han, and Alexander Babanin

Abstract

Mixing induced by nonbreaking surface waves was investigated in a wave tank by measuring the thermal destratification rate of the water column. One experiment without waves and four experiments with waves of amplitudes ranging from 1.0 to 1.5 cm and wavelength from 30 to 75 cm were conducted. Water temperature variations at depths from 4 to 12 cm below the surface were measured. In the layer from 4 to 7 cm, the originally dense isothermal lines disperse soon after the waves are generated, whereas the vertical gradient from 9 to 12 cm is maintained for a relatively long time. The time span, during which the water temperature becomes well mixed, changes from about 20 h for the case with no waves to tens of minutes for the case with waves, and it decreases with increasing wave amplitude and wavelength. A one-dimensional diffusion numerical model with wave-induced mixing parameterization shows consistent results with the measurement. The study demonstrates that the mixing induced by nonbreaking waves may add an important contribution to the vertical mixing process in the upper ocean and suggests a way to parameterize wave-induced mixing in numerical ocean models.

Full access
Lei Zhang, Weiqing Han, Yuanlong Li, and Eric D. Maloney

Abstract

Air–sea coupling processes over the north Indian Ocean associated with the Indian summer monsoon intraseasonal oscillation (MISO) are investigated. Observations show that MISO convection anomalies affect underlying sea surface temperature (SST) through changes in surface shortwave radiation and surface latent heat flux. In turn, SST anomalies may also affect the MISO precipitation tendency (dP/dt). In particular, warm (cold) SST anomalies can contribute to increasing (decreasing) precipitation rate through enhanced (suppressed) surface convergence associated with boundary layer pressure gradients. These air–sea interaction processes are manifest in a quadrature relation between MISO precipitation and SST anomalies. A local air–sea coupling model (LACM) is formulated based on these observed physical processes. The period of the LACM is proportional to the square root of seasonal mixed layer depth H, assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the north Indian Ocean during the May–June monsoon developing (July–August monsoon mature) phase when H is shallow (deep). This result is consistent with observed MISO characteristics. A 30-day-period oscillating external forcing is also added to the LACM, representing intraseasonal oscillations propagating from the equatorial Indian Ocean to the north Indian Ocean. It is found that resonance will occur when H is close to 25 m, which significantly enhances the MISO amplitude. This process may contribute to the higher MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with the seasonal cycle of H.

Full access
Lei Zhang, Weiqing Han, Yuanlong Li, and Nicole S. Lovenduski

Abstract

In this study, the Indian Ocean upper-ocean variability associated with the subtropical Indian Ocean dipole (SIOD) is investigated. We find that the SIOD is associated with a prominent southwest–northeast sea level anomaly (SLA) dipole over the western-central south Indian Ocean, with the north pole located in the Seychelles–Chagos thermocline ridge (SCTR) and the south pole at southeast of Madagascar, which is different from the distribution of the sea surface temperature anomaly (SSTA). While the thermocline depth and upper-ocean heat content anomalies mirror SLAs, the air–sea CO2 flux anomalies associated with SIOD are controlled by SSTA. In the SCTR region, the westward propagation of oceanic Rossby waves generated by anomalous winds over the eastern tropical Indian Ocean is the major cause for the SLAs, with cyclonic wind causing negative SLAs during positive SIOD (pSIOD). Local wind forcing is the primary driver for the SLAs southeast of Madagascar, with anticyclonic winds causing positive SLAs. Since the SIOD is correlated with ENSO, the relative roles of the SIOD and ENSO are examined. We find that while ENSO can induce significant SLAs in the SCTR region through an atmospheric bridge, it has negligible impact on the SLA to the southeast of Madagascar. By contrast, the SIOD with ENSO influence removed is associated with an opposite SLA in the SCTR and southeast of Madagascar, corresponding to the SLA dipole identified above. A new subtropical dipole mode index (SDMI) is proposed, which is uncorrelated with ENSO and thus better represents the pure SIOD effect.

Full access
Lei Zhang, Weiqing Han, Yuanlong Li, and Toshiaki Shinoda

Abstract

Generation and development mechanisms of the Ningaloo Niño are investigated using ocean and atmospheric general circulation model experiments. Consistent with previous studies, northerly wind anomalies off the West Australian coast are critical in generating warm sea surface temperature (SST) anomalies of the Ningaloo Niño, which induce SST warming through reduced turbulent heat loss toward the atmosphere (by decreasing surface wind speed), enhanced Leeuwin Current heat transport, and weakened coastal upwelling. Our results further reveal that northerly wind anomalies suppress the cold dry air transport from the Southern Ocean to the Ningaloo Niño region, which also contributes to the reduced turbulent heat loss. A positive cloud–radiation feedback is also found to play a role. Low stratiform cloud is reduced by the underlying warm SSTAs and the weakened air subsidence, which further enhances the SST warming by increasing downward solar radiation. The enhanced Indonesian Throughflow also contributes to the Ningaloo Niño, but only when La Niña co-occurs. Further analysis show that northerly wind anomalies along the West Australian coast can be generated by both remote forcing from the Pacific Ocean (i.e., La Niña) and internal processes of the Indian Ocean, such as the positive Indian Ocean dipole (IOD). Approximately 40% of the Ningaloo Niño events during 1950–2010 co-occurred with La Niña, and 30% co-occurred with positive IOD. There are also ~30% of the events independent of La Niña and positive IOD, suggesting the importance of other processes in triggering the Ningaloo Niño.

Full access
Yuanlong Li, Weiqing Han, Lei Zhang, and Fan Wang

Abstract

The southeast Indian Ocean (SEIO) exhibits decadal variability in sea surface temperature (SST) with amplitudes of ~0.2–0.3 K and covaries with the central Pacific (r = −0.63 with Niño-4 index for 1975–2010). In this study, the generation mechanisms of decadal SST variability are explored using an ocean general circulation model (OGCM), and its impact on atmosphere is evaluated using an atmospheric general circulation model (AGCM). OGCM experiments reveal that Pacific forcing through the Indonesian Throughflow explains <20% of the total SST variability, and the contribution of local wind stress is also small. These wind-forced anomalies mainly occur near the Western Australian coast. The majority of SST variability is attributed to surface heat fluxes. The reduced upward turbulent heat flux (QT; latent plus sensible heat flux), owing to decreased wind speed and anomalous warm, moist air advection, is essential for the growth of warm SST anomalies (SSTAs). The warming causes reduction of low cloud cover that increases surface shortwave radiation (SWR) and further promotes the warming. However, the resultant high SST, along with the increased wind speed in the offshore area, enhances the upward QT and begins to cool the ocean. Warm SSTAs co-occur with cyclonic low-level wind anomalies in the SEIO and enhanced rainfall over Indonesia and northwest Australia. AGCM experiments suggest that although the tropical Pacific SST has strong effects on the SEIO region through atmospheric teleconnection, the cyclonic winds and increased rainfall are mainly caused by the SEIO warming through local air–sea interactions.

Open access
Yuanlong Li, Weiqing Han, Fan Wang, Lei Zhang, and Jing Duan

Abstract

Multi-time-scale variabilities of the Indian Ocean (IO) temperature over 0–700 m are revisited from the perspective of vertical structure. Analysis of historical data for 1955–2018 identifies two dominant types of vertical structures that account for respectively 70.5% and 21.2% of the total variance on interannual-to-interdecadal time scales with the linear trend and seasonal cycle removed. The leading type manifests as vertically coherent warming/cooling with the maximal amplitude at ~100 m and exhibits evident interdecadal variations. The second type shows a vertical dipole structure between the surface (0–60 m) and subsurface (60–400 m) layers and interannual-to-decadal fluctuations. Ocean model experiments were performed to gain insights into underlying processes. The vertically coherent, basinwide warming/cooling of the IO on an interdecadal time scale is caused by changes of the Indonesian Throughflow (ITF) controlled by Pacific climate and anomalous surface heat fluxes partly originating from external forcing. Enhanced changes in the subtropical southern IO arise from positive air–sea feedback among sea surface temperature, winds, turbulent heat flux, cloud cover, and shortwave radiation. Regarding dipole-type variability, the basinwide surface warming is induced by surface heat flux forcing, and the subsurface cooling occurs only in the eastern IO. The cooling in the southeast IO is generated by the weakened ITF, whereas that in the northeast IO is caused by equatorial easterly winds through upwelling oceanic waves. Both El Niño–Southern Oscillation (ENSO) and IO dipole (IOD) events are favorable for the generation of such vertical dipole anomalies.

Restricted access
Yuanlong Li, Weiqing Han, Wanqiu Wang, Lei Zhang, and M. Ravichandran

Abstract

Northward-propagating Indian summer monsoon intraseasonal oscillations (MISOs) are a major origin of the active–break spells of the monsoon rainfall. Forecast results for 28 active and 27 break spells from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), during 1999–2010 are analyzed. CFSv2 forecasts are able to represent the propagation of MISOs from the equator to central India, showing improvements in many aspects compared to its previous version. Systematic biases for MISOs, however, still exist, exhibiting apparently weaker amplitude and slower northward propagation compared to observations. The eastern Arabian Sea (EAS)–western Bay of Bengal (WBB) region (EAS–WBB region; 12°–20°N, 65°–85°E) is found to be critical for the MISO prediction. In that region, the forecast and observed MISO trajectories begin to bifurcate from each other, and forecast errors grow rapidly. Further diagnosis reveals that local air–sea interaction in that region is severely underrepresented in CFSv2. Sea surface temperature (SST) response to surface heat flux forcing and convection response to SST forcing are both too weak, leading to the underestimated MISO amplitude. The relationship between precipitation and SST in CFSv2 is much more chaotic than in observation. The misrepresentation of air–sea coupling results in longer MISO periods in the EAS–WBB region, manifesting as slower propagation and delayed arrival of MISOs in central India. Refining the air–sea coupling processes is crucial for improving the CFSv2 forecast. This includes taking into account the ocean skin layer, better resolving the diurnal cycle, and improving the ocean model physics.

Full access