Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Michael Black x
  • Journal of the Atmospheric Sciences x
  • User-accessible content x
Clear All Modify Search
Robert F. Rogers, Michael L. Black, Shuyi S. Chen, and Robert A. Black

Abstract

This study presents a framework for comparing hydrometeor and vertical velocity fields from mesoscale model simulations of tropical cyclones with observations of these fields from a variety of platforms. The framework is based on the Yuter and Houze constant frequency by altitude diagram (CFAD) technique, along with a new hurricane partitioning technique, to compare the statistics of vertical motion and reflectivity fields and hydrometeor concentrations from two datasets: one consisting of airborne radar retrievals and microphysical probe measurements collected from tropical cyclone aircraft flights over many years, and another consisting of cloud-scale (1.67-km grid length) tropical cyclone simulations using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Such comparisons of the microphysics fields can identify biases in the simulations that may lead to an identification of deficiencies in the modeling system, such as the formulation of various physical parameterization schemes used in the model. Improvements in these schemes may potentially lead to better forecasts of tropical cyclone intensity and rainfall.

In Part I of this study, the evaluation framework is demonstrated by comparing the radar retrievals and probe measurements to MM5 simulations of Hurricanes Bonnie (1998) and Floyd (1999). Comparisons of the statistics from the two datasets show that the model reproduces many of the gross features seen in the observations, though notable differences are evident. The general distribution of vertical motion is similar between the observations and simulations, with the strongest up- and downdrafts making up a small percentage of the overall population in both datasets, but the magnitudes of vertical motion are weaker in the simulations. The model-derived reflectivities are much higher than observed, and correlations between vertical motion and hydrometeor concentration and reflectivity show a much stronger relationship in the model than what is observed. Possible errors in the data processing are discussed as potential sources of differences between the observed and simulated datasets in Part I. In Part II, attention will be focused on using the evaluation framework to investigate the role that different model configurations (i.e., different resolutions and physical parameterizations) play in producing different microphysics fields in the simulation of Hurricane Bonnie. The microphysical and planetary boundary layer parameterization schemes, as well as higher horizontal and vertical resolutions, will be tested in the simulation to identify the extent to which changes in these schemes are reflected in improvements of the statistical comparisons with the observations.

Full access
Michael L. Black, Robert W. Burpee, and Frank D. Marks Jr.

Abstract

Vertical motions in seven Atlantic hurricanes are determined from data recorded by Doppler radars on research aircraft. The database consists of Doppler velocities and reflectivities from vertically pointing radar rays collected along radial flight legs through the hurricane centers. The vertical motions are estimated throughout the depth of the troposphere from the Doppler velocities and bulk estimates of particle fallspeeds.

Portions of the flight tracks are subjectively divided into eyewall, rainband, stratiform, and “other” regions. Characteristics of the vertical velocity and radar structure are described as a function of altitude for the entire dataset and each of the four regions. In all of the regions, more than 70% of the vertical velocities range from −2 to 2 m s−1. The broadest distribution of vertical motion is in the eyewall region where ∼5% of the vertical motions are >5 m s−1. Averaged over the entire dataset, the mean vertical velocity is upward at all altitudes. Mean downward motion occurs only in the lower troposphere of the stratiform region. Significant vertical variations in the mean profiles of vertical velocity and reflectivity are discussed and related to microphysical processes.

In the lower and middle troposphere, the characteristics of the Doppler-derived vertical motions are similar to those described in an earlier study using flight-level vertical velocities, even though the horizontal resolution of the Doppler data is ∼750 m compared to ∼125 m from the in situ flight-level measurements. The Doppler data are available at higher altitudes than those reached by turboprop aircraft and provide information on vertical as well as horizontal variations. In a vertical plane along the radial flight tracks, Doppler up- and downdrafts are defined at each 300-m altitude interval as vertical velocities whose absolute values continuously exceed 1.5 m s−1, with at least one speed having an absolute value greater than 3.0 m s−1. The properties of the Doppler drafts are lognormally distributed. In each of the regions, updrafts outnumber downdrafts by at least a factor of 2 and updrafts are wider and stronger than downdrafts. Updrafts in the eyewall slope radially outward with height and are significantly correlated over larger radial and vertical extents than in the other three regions. If the downwind (tangential) slope with height of updrafts varies little among the regions, updrafts capable of transporting air with relatively large moist static energy from the boundary layer to the upper troposphere are primarily in the eyewall region. Downdrafts affect a smaller vertical and horizontal area than updrafts and have no apparent radial slope.

The total upward or downward mass flux is defined as the flux produced by all of the upward or downward Doppler vertical velocities. The maximum upward mass flux in all but the “other” region is near 1-km altitude, an indication that boundary-layer convergence is efficient in producing upward motion. Above the sea surface, the downward mass flux decreases with altitude. At every altitude, the total net mass flux is upward, except for the lower troposphere in the stratiform region where it is downward. Doppler-derived up- and downdrafts are a subset of the vertical velocity field that occupy small fractions of the total area, yet they contribute a substantial fraction to the total mass flux. In the eyewall and rainband regions, for example, the Doppler updrafts cover less than 30% of the area but are responsible for >75% and >50% to the total upward mass flux, respectively. The Doppler downdrafts typically encompass less than 10% of the area yet provide ∼50% of the total downward mass flux in the eyewall and ∼20% of the total downward flux in the rainband, stratiform, and “other” regions.

Full access