Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Na Wen x
  • User-accessible content x
Clear All Modify Search
Zhengyu Liu and Na Wen

Abstract

The equilibrium feedback assessment (EFA) is combined with the singular value decomposition (SVD) to assess the large-scale feedback modes from a lower boundary variability field onto an atmospheric field. The leading EFA-SVD modes are the optimal feedback modes, with the lower boundary forcing patterns corresponding to those that generate the largest atmospheric responses, and therefore provide upper bounds of the feedback response. The application of EFA-SVD to an idealized coupled ocean–atmosphere model demonstrates that EFA-SVD is able to extract the leading feedback modes successfully. Furthermore, these large-scale modes are the least sensitive to sampling errors among all the feedback processes and therefore are the most robust for statistical estimation. The EFA-SVD is then applied to the observed North Atlantic ocean–atmosphere system for the assessment of the sea surface temperature (SST) feedback on the surface heat flux and the geopotential height, respectively. The dominant local negative feedback of SST on heat flux is confirmed, with an upper bound of about 40 W m−2 K−1 for basin-scale anomalies. The SST also seems to exert a strong feedback on the atmospheric geopotential height: the optimal SST forcing has a dipole pattern that generates an optimal response of a North Atlantic Oscillation (NAO) pattern, with an upper bound of about 70 m K−1 at 500 hPa. Further issues on the EFA-SVD analysis are also discussed.

Full access
Zhengyu Liu, Na Wen, and Lei Fan

Abstract

Three statistic methods [generalized equilibrium feedback analysis (GEFA), linear inverse modeling (LIM), and fluctuation–dissipation theorem (FDT)] are compared for their assessment of the atmospheric response to sea surface temperature variability in the coupled climate system with a sample length comparable with the observations (decades). The comparison is made first in an idealized coupled model and then in the observations. For daily to pentad data, for a linear stochastic system, the simple model study demonstrates that all three methods are able to provide a consistent assessment of the atmospheric response. For monthly data, GEFA is able to produce an assessment comparable with the daily or pentad assessments using the three methods. The consistence of the three methods is further confirmed in the observations for the responses of the atmospheric geopotential height (at 200 hPa) to the tropical ENSO mode and the North Pacific mode. It is found that the three methods produce a consistent response with the overall pattern correlation over 0.95 and the amplitude difference within 10%–20%. The consistent results in both the simple model and the observations suggest that the three statistical methods can be used as a cross validation on the robustness of the assessment of the atmospheric response to surface forcing in the observations.

Full access
Zhengyu Liu, Na Wen, and Yun Liu

Abstract

A statistical method is developed to assess the full climate feedback of nonlocal climate feedbacks. The method is a multivariate generalization of the univariate equilibrium feedback assessment (EFA) method of Frankignoul et al. As a pilot study here, the generalized EFA (GEFA) is applied to the assessment of the feedback response of sea surface temperature (SST) on surface heat flux in a simple ocean–atmosphere model that includes atmospheric advection. It is shown that GEFA can capture major features of nonlocal climate feedback and sheds light on the dynamics of the atmospheric response, as long as the spatial resolution (or spatial degree of freedom) is not very high.

Given a sample size, sampling error tends to increase significantly with the spatial resolution of the data. As a result, useful estimates of the feedback can only be obtained at sufficiently low resolution. The sampling error is also found to increase significantly with the spatial scale of the atmospheric forcing and, in turn, the SST variability. This implies the potential difficulty in distinguishing the nonlocal feedbacks arising from small-scale SST variability. These deficiencies call for further improvements on the assessment methods for nonlocal climate feedbacks.

Full access
Na Wen, Zhengyu Liu, and Qinyu Liu

Abstract

Most previous studies have proven the local negative heat flux feedback (the surface heat flux response to SST anomalies) in the midlatitude areas. However, it is uncertain whether a nonlocal heat flux feedback can be observed. In this paper, the generalized equilibrium feedback assessment (GEFA) method is employed to examine the full surface turbulent heat flux response to SST in the North Atlantic Ocean using NCEP–NCAR reanalysis data. The results not only confirm the dominant local negative feedback, but also indicate a robust nonlocal positive feedback of the Gulf Stream Extension (GSE) SST to the downstream heat flux in the subpolar region. This nonlocal feedback presents a strong seasonality, with response magnitudes of in winter and in summer. Further study indicates that the nonlocal effect is initiated by the adjustments of the downstream surface wind to the GSE SST anomalies.

Full access
Zhihong Jiang, Hao Yang, Zhengyu Liu, Yanzhu Wu, and Na Wen

Abstract

This study investigates the influence of different sea surface temperature (SST) modes on the winter temperature in China using the generalized equilibrium feedback assessment (GEFA). It is found that the second EOF mode of winter temperature in China during 1958–2010 shows a typical northeast–southwest (NE–SW) pattern, which is a major spatial mode of Chinese winter temperature at interannual scales. The winter temperature of the NE–SW pattern is forced mainly by SST modes in the tropical Pacific and Atlantic. For 2009/10, the tropical Pacific El Niño mode and tropical Atlantic tripole mode have the largest contribution to the response. The physical mechanism of the cold northeast–warm southwest (CNE–WSW) pattern is also explained in terms of GEFA of the responses of the atmospheric circulation. The northerly flow at the low level transports cold air to northern and northeastern China, resulting in a lower temperature there. Meanwhile, the anomaly meridional wind advects warm air from the southern oceans to southwestern China, leading to warming there.

Full access
Na Wen, Zhengyu Liu, Qinyu Liu, and Claude Frankignoul

Abstract

The authors present a comprehensive assessment of the observed atmospheric response to SST variability modes in a unified approach using the Generalized Equilibrium Feedback Analysis (GEFA). This study confirms a dominant atmospheric response to the tropical SST variability associated with ENSO. A further analysis shows that the classical response to ENSO consists of two parts, one responding to the tropical Pacific ENSO mode and the other to the tropical Indian Ocean monopole (IOM) mode. The Pacific ENSO generates a significant baroclinic Rossby wave response locally over the tropical Pacific as well as equivalent barotropic wave train responses remotely into the extratropics. The IOM mode forces a strongly zonally symmetric response throughout the tropics and the extratropics. Furthermore, modest atmospheric responses to other oceanic modes were identified. For example, the North Pacific SST variability mode appears to generate an equivalent barotropic warm SST-ridge response locally over the Aleutian low with significant downstream influence on the North Atlantic Oscillation (NAO), whereas the North Atlantic tripole SST mode tends to force a local response on NAO. Finally, this pilot study serves as a demonstration of the potential utility of GEFA in identifying multiple surface feedbacks to the atmosphere in the observation.

Full access
Zhengyu Liu, Steve Vavrus, Feng He, Na Wen, and Yafang Zhong

Abstract

The response of tropical Pacific SST to increased atmospheric CO2 concentration is reexamined with a new focus on the latitudinal SST gradient. Available evidence, mainly from climate models, suggests that an important tropical SST fingerprint to global warming is an enhanced equatorial warming relative to the subtropics. This enhanced equatorial warming provides a fingerprint of SST response more robust than the traditionally studied El Niño–like response, which is characterized by the zonal SST gradient. Most importantly, the mechanism of the enhanced equatorial warming differs fundamentally from the El Niño–like response; the former is associated with surface latent heat flux, shortwave cloud forcing, and surface ocean mixing, while the latter is associated with equatorial ocean upwelling and wind-upwelling dynamic ocean–atmosphere feedback.

Full access
Dian Wen, Ying Li, Da-Lin Zhang, Lin Xue, and Na Wei

Abstract

A statistical analysis of tropical upper-tropospheric trough (TUTT) cells over the western North Pacific Ocean (WNP) during 2006 to 2015 is performed using the NCEP Final reanalysis. A total of 369 TUTT-cell events or 6836 TUTT cells are identified, with a peak frequency in July. Most TUTT cells form to the east of 150°E and then move southwestward with a mean speed of 6.6 m s−1 and a mean life span of 4.4 days. About 75% of the TUTT cells have radii of <500 km with 200-hPa central heights of <1239.4 dam. In general, TUTT cells exhibit negative height anomalies above 450 hPa, with their peak amplitudes at 200 hPa, pronounced cold anomalies in the 650–200-hPa layer, and significant cyclonic vorticity in the 550–125-hPa layer. A comparison of the composite TUTT cells among the eastern, central, and western WNP areas shows the generation of an intense cold-cored vortex as a result of the southward penetration of a midlatitude trough into a climatological TUTT over the eastern WNP region. The TUTT cell with pronounced rotation is cut off from the midlatitude westerlies after moving to the central WNP region, where it enters its mature phase, under the influence of northeasterly flow. The TUTT cell weakens in rotation and shrinks in size, diminishing within the TUTT after arriving at the western WNP region. Results suggest that, although most TUTT cells may diminish before reaching the western WNP, their vertical influences may extend to the surface layer and last longer than their signals at 200 hPa.

Full access