Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Natalia Calvo x
  • User-accessible content x
Clear All Modify Search
David Barriopedro and Natalia Calvo

Abstract

This paper examines the influence of El Niño–Southern Oscillation (ENSO) on different aspects of major stratospheric sudden warmings (SSWs), focusing on the precursor role of blocking events. The results reveal an ENSO modulation of the blocking precursors of SSWs. European and Atlantic blocks tend to precede SSWs during El Niño (EN), whereas eastern Pacific and Siberian blocks are the preferred precursors of SSWs during La Niña (LN) winters. This ENSO preference for different blocking precursors seems to occur through an ENSO effect on regional blocking persistence, which in turn favors the occurrence of SSWs. The regional blocking precursors of SSWs during each ENSO phase also have different impacts on the upward propagation of planetary-scale wavenumbers 1 and 2; hence, they determine ENSO differences in the wavenumber signatures of SSWs. SSWs occurring during EN are preceded by amplification of wavenumber 1, whereas LN SSWs are predominantly associated to wavenumber-2 amplification. However, there is not a strong preference for splitting or displacement SSWs during any ENSO phase. This is mainly because during EN, splitting SSWs do not show a wavenumber-2 pattern.

Full access
Natalia Calvo and Rolando R. Garcia

Abstract

Two simulations from the Whole Atmosphere Community Climate Model, covering the periods 1950–2003 and 1980–2050, are used to investigate the nature of the waves that force the increase of the tropical upwelling in the lower stratosphere as the concentration of greenhouse gases increases. Decomposition of the wave field resolved by the model into stationary and transient wavenumber spectra allows attribution of trends in the Eliassen–Palm (EP) flux and its divergence to specific wave components. This analysis reveals that enhanced dissipation of stationary planetary waves is the main driver of trends in the tropical upwelling in the lower stratosphere. The contribution of transient waves is smaller and is responsible mainly for trends in wave forcing in the subtropics and middle latitudes, which, however, provide only minor contributions to the mean tropical upwelling. Examination of individual wave structures shows that the stationary waves are tropical Rossby waves trapped in the upper troposphere and lower stratosphere, whereas the transient components are synoptic waves present in the subtropics and middle latitudes. The authors also present evidence that trends in resolved wave forcing in the lower stratosphere are due to both changes in wave transmissivity and changes in wave excitation, with the first mechanism dominating the behavior of the simulation during the last half of the twentieth century, while the second is clearly more important in the simulation during the first half of the twenty-first century.

Full access
Maddalen Iza, Natalia Calvo, and Elisa Manzini

Abstract

A Northern Hemisphere (NH) polar stratospheric pathway for La Niña events is established during wintertime based on reanalysis data for the 1958–2012 period. A robust polar stratospheric response is observed in the NH during strong La Niña events, characterized by a significantly stronger and cooler polar vortex. Significant wind anomalies reach the surface, and a robust impact on the North Atlantic–European (NAE) region is observed. A dynamical analysis reveals that the stronger polar stratospheric winds during La Niña winters are due to reduced upward planetary wave activity into the stratosphere. This finding is the result of destructive interference between the climatological and the anomalous La Niña tropospheric stationary eddies over the Pacific–North American region.

In addition, the lack of a robust stratospheric signature during La Niña winters reported in previous studies is investigated. It is found that this is related to the lower threshold used to detect the events, which signature is consequently more prone to be obscured by the influence of other sources of variability. In particular, the occurrence of stratospheric sudden warmings (SSWs), partly linked to the phase of the quasi-biennial oscillation, modulates the observed stratospheric signal. In the case of La Niña winters defined by a lower threshold, a robust stratospheric cooling is found only in the absence of SSWs. Therefore, these results highlight the importance of using a relatively restrictive threshold to define La Niña events in order to obtain a robust surface response in the NAE region through the stratosphere.

Full access
Froila M. Palmeiro, David Barriopedro, Ricardo García-Herrera, and Natalia Calvo

Abstract

Sudden stratospheric warmings (SSWs) are characterized by a pronounced increase of the stratospheric polar temperature during the winter season. Different definitions have been used in the literature to diagnose the occurrence of SSWs, yielding discrepancies in the detected events. The aim of this paper is to compare the SSW climatologies obtained by different methods using reanalysis data. The occurrences of Northern Hemisphere SSWs during the extended-winter season and the 1958–2014 period have been identified for a suite of eight representative definitions and three different reanalyses. Overall, and despite the differences in the number and exact dates of occurrence of SSWs, the main climatological signatures of SSWs are not sensitive to the considered reanalysis.

The mean frequency of SSWs is 6.7 events decade−1, but it ranges from 4 to 10 events, depending on the method. The seasonal cycle of events is statistically indistinguishable across definitions, with a common peak in January. However, the multidecadal variability is method dependent, with only two definitions displaying minimum frequencies in the 1990s. An analysis of the mean signatures of SSWs in the stratosphere revealed negligible differences among methods compared to the large case-to-case variability within a given definition.

The stronger and more coherent tropospheric signals before and after SSWs are associated with major events, which are detected by most methods. The tropospheric signals of minor SSWs are less robust, representing the largest source of discrepancy across definitions. Therefore, to obtain robust results, future studies on stratosphere–troposphere coupling should aim to minimize the detection of minor warmings.

Full access
Froila M. Palmeiro, Natalia Calvo, and Rolando R. Garcia

Abstract

The climatology and future changes of the Brewer–Dobson circulation (BDC) in three climate change scenarios are studied using the latest version of the Whole Atmosphere Community Climate Model (WACCM4), which is fully coupled to an ocean model. The results show an acceleration in both the shallow and deep branches of circulation in response to increasing greenhouse gases (GHGs) together with an upward displacement of the tropical upwelling in the deep branch near the stratopause. The downward control principle reveals that different waves are involved in forcing the acceleration of the upper and lower branches. Climatological-mean tropical upwelling in both the lower and upper stratosphere is dominated by explicitly resolved, planetary-scale waves. Trends in the tropical upwelling in the lower stratosphere are mainly attributed to explicitly resolved, planetary-scale waves. However, in the upper stratosphere, despite the fact that resolved waves control the forcing of the climatological upwelling, their contribution to the long-term trend diminishes with increasing GHGs, while the role of gravity waves associated with fronts increases and becomes dominant in the model scenario with the largest GHG increases. The intensification and upward displacement of the subtropical tropospheric jets due to climate change leads to filtering of the westerly part of the frontal gravity wave spectrum, leaving the easterly components to reach the upper stratosphere and force the changes in the circulation there.

Full access
Daniel R. Marsh, Michael J. Mills, Douglas E. Kinnison, Jean-Francois Lamarque, Natalia Calvo, and Lorenzo M. Polvani

Abstract

The NCAR Community Earth System Model (CESM) now includes an atmospheric component that extends in altitude to the lower thermosphere. This atmospheric model, known as the Whole Atmosphere Community Climate Model (WACCM), includes fully interactive chemistry, allowing, for example, a self-consistent representation of the development and recovery of the stratospheric ozone hole and its effect on the troposphere. This paper focuses on analysis of an ensemble of transient simulations using CESM1(WACCM), covering the period from the preindustrial era to present day, conducted as part of phase 5 of the Coupled Model Intercomparison Project. Variability in the stratosphere, such as that associated with stratospheric sudden warmings and the development of the ozone hole, is in good agreement with observations. The signals of these phenomena propagate into the troposphere, influencing near-surface winds, precipitation rates, and the extent of sea ice. In comparison of tropospheric climate change predictions with those from a version of CESM that does not fully resolve the stratosphere, the global-mean temperature trends are indistinguishable. However, systematic differences do exist in other climate variables, particularly in the extratropics. The magnitude of the difference can be as large as the climate change response itself. This indicates that the representation of stratosphere–troposphere coupling could be a major source of uncertainty in climate change projections in CESM.

Full access
Natalia Calvo Fernández, Ricardo GarcÍa Herrera, David Gallego Puyol, Emiliano Hernández MartÍn, Rolando R. GarcÍa, Luis Gimeno Presa, and Pedro Ribera RodrÍguez

Abstract

The El Niño–Southern Oscillation (ENSO) signal in the troposphere and lower stratosphere was investigated using Microwave Sounding Unit (MSU) data for the period 1979–2000. Empirical orthogonal functions (EOFs) were computed separately for zonal-mean and eddy temperatures in the Tropics and shown to provide a compact, physically intuitive description of ENSO that captures many of the details of its inception and evolution. Regressions of the MSU data on the principal components (PCs) of the tropical EOFs were then used to estimate the global signal of ENSO. The results show that ENSO accounts for over two-thirds of the temperature variability in the tropical troposphere, where its signature is composed of distinct zonal-mean and eddy patterns whose evolution is not simultaneous. In the tropical stratosphere, and outside the Tropics, ENSO explains a much smaller fraction of the variance (∼10%), and manifests itself purely in the form of eddy anomaly patterns. The PCs of the eddy EOFs of the tropical stratosphere are almost perfectly correlated with those of the troposphere, suggesting that together the EOFs describe the vertical structure of equatorial waves. Volcanic eruptions and the quasi-biennial oscillation (QBO) are responsible for most of the variability (∼87%) of the tropical lower stratosphere, and this variability is uncorrelated with ENSO; in the tropical troposphere, the effect of volcanic eruptions is detectable but small, accounting for about 3% of the variance.

Full access
Tao Li, Natalia Calvo, Jia Yue, James M. Russell III, Anne K. Smith, Martin G. Mlynczak, Amal Chandran, Xiankang Dou, and Alan Z. Liu

Abstract

In the Southern Hemisphere (SH) polar region, satellite observations reveal a significant upper-mesosphere cooling and a lower-thermosphere warming during warm ENSO events in December. An opposite pattern is observed in the tropical mesopause region. The observed upper-mesosphere cooling agrees with a climate model simulation. Analysis of the simulation suggests that enhanced planetary wave (PW) dissipation in the Northern Hemisphere (NH) high-latitude stratosphere during El Niño strengthens the Brewer–Dobson circulation and cools the equatorial stratosphere. This increases the magnitude of the SH stratosphere meridional temperature gradient and thus causes the anomalous stratospheric easterly zonal wind and early breakdown of the SH stratospheric polar vortex. The resulting perturbation to gravity wave (GW) filtering causes anomalous SH mesospheric eastward GW forcing and polar upwelling and cooling. In addition, constructive inference of ENSO and quasi-biennial oscillation (QBO) could lead to stronger stratospheric easterly zonal wind anomalies at the SH high latitudes in November and December and early breakdown of the SH stratospheric polar vortex during warm ENSO events in the easterly QBO phase (defined by the equatorial zonal wind at ~25 hPa). This would in turn cause much more SH mesospheric eastward GW forcing and much colder polar temperatures, and hence it would induce an early onset time of SH summer polar mesospheric clouds (PMCs). The opposite mechanism occurs during cold ENSO events in the westerly QBO phase. This implies that ENSO together with QBO could significantly modulate the breakdown time of SH stratospheric polar vortex and the onset time of SH PMC.

Full access
Edwin P. Gerber, Amy Butler, Natalia Calvo, Andrew Charlton-Perez, Marco Giorgetta, Elisa Manzini, Judith Perlwitz, Lorenzo M. Polvani, Fabrizio Sassi, Adam A. Scaife, Tiffany A. Shaw, Seok-Woo Son, and Shingo Watanabe

Advances in weather and climate research have demonstrated the role of the stratosphere in the Earth system across a wide range of temporal and spatial scales. Stratospheric ozone loss has been identified as a key driver of Southern Hemisphere tropospheric circulation trends, affecting ocean currents and carbon uptake, sea ice, and possibly even the Antarctic ice sheets. Stratospheric variability has also been shown to affect short-term and seasonal forecasts, connecting the tropics and midlatitudes and guiding storm-track dynamics. The two-way interactions between the stratosphere and the Earth system have motivated the World Climate Research Programme's (WCRP) Stratospheric Processes and their Role in Climate's (SPARC) activity on Modelling the Dynamics and Variability of the Stratosphere-Troposphere System (DynVar) to investigate the impact of stratospheric dynamics and variability on climate. This assessment will be made possible by two new multimodel datasets. First, roughly 10 models with a well-resolved stratosphere are participating in the Coupled Model Intercomparison Project phase 5 (CMIP5), providing the first multimodel ensemble of climate simulations coupled from the stratopause to the sea floor. Second, the Stratosphere Resolving Historical Forecast Project (Strat-HFP) of WCRP's Climate Variability and Predictability (CLIVAR) program is forming a multimodel set of seasonal hind-casts with stratosphere-resolving models, revealing the impact of both stratospheric initial conditions and dynamics on intraseasonal prediction. The CMIP5 and Strat-HFP model datasets will offer an unprecedented opportunity to understand the role of the stratosphere in the natural and forced variability of the Earth system and to determine whether incorporating knowledge of the middle atmosphere improves seasonal forecasts and climate projections.

Full access