Search Results

You are looking at 1 - 10 of 55 items for

  • Author or Editor: Peter T. May x
  • User-accessible content x
Clear All Modify Search
Peter T. May

Abstract

A slow-moving weak tropical cyclone passed near Darwin, Australia, in December 1990. Rainbands were observed by a Doppler weather radar and a 50-MHz wind profiler for over 24 h. The principal bands were seen to be organized on two distinct scales. Bands of stratiform precipitation formed at a radius of about 100 km from the center of the storm and moved outward at about 6 m s−1. These decayed after they moved past Darwin over land. A distinct midlevel jet extended along the bands. Within the bands, convective lines formed at regular intervals, propagated against and outward with respect to the mean flow, and acted as a partial barrier to the radial inflow. Deep, active convection was confined to these lines. The vertical motion in the convection showed a distinct acceleration above the freezing level with measured updrafts of up to 10 m s−1. The convection elevated the tropopause height over the rainband. It is hypothesized that an inertia-gravity wave propagating from near the storm eye was responsible for triggering the convection within the lines. This hypothesis, although difficult to test, accounts for the propagation characteristics of the convective lines and offers an explanation of why similar features have not been seen in more intense storms.

Full access
Peter T. May

Abstract

The performance and limitations of the Bureau of Meteorology Research Centre's (BMRC) 50-MHz wind profiler operating at Saipan in the central western Pacific are assessed. Hourly averaged profiler estimates of horizontal wind are compared with 120 radiosonde ascents. This comparison shows the best agreement of any large profiler-sonde comparison published with rms differences of about 1.5 m s−3 at some altitudes and about 2.3 m s−1 for all altitudes below 10 km. The results appear to be almost independent of wind-speed or precipitation conditions.

Full access
Peter T. May

Abstract

High-time-resolution wind profiler/RASS observations are used to describe the vertical velocity, temperature, and reflectivity fields of two gust fronts in detail. The first was a freely propagating gust front and the second interacted with a rain cell near the profiler site. The first of these shows a large updraft confined to the warm air ahead of the front. This updraft coincided with the (nonhydrostatic) pressure jump. The vertical motions within the gust front were an order of magnitude smaller. The updraft impinging on the top of the boundary layer excited a clear gravity wave signature in the free troposphere. The interaction of the vertical circulation and the weakly precipitating cloud in the second case coincided with explosive growth of the cell with reflectivities increasing from ∼30 dBZ to >50 dBZ in 6 min. A descending reflectivity core was observed at this time. Precipitation loading played a significant role in a downdraft behind the gust front head leading to adiabatic warming as no evidence of evaporative cooling in the downdraft was seen. A distinct clear air peak was visible in the profiler Doppler spectra even during the heavy rain.

Full access
Peter T. May

Abstract

A simple model is used to illustrate the limitations of dual pulse repetition time (PRT) radars for measurements of wind fields with strong horizontal wind gradients. In such conditions, errors may occur even if the radial velocity measurements in the individual rays are not aliased. However, basic circulation and divergent signatures are seen and some improvement is possible with further postprocessing of the data. This is significant, as radars using this procedure are being used operationally for severe weather applications in Australia and Canada.

Full access
Peter T. May

Abstract

No abstract available

Full access
Peter T. May and Andrew Ballinger

Abstract

A season of operational cell and track data from Darwin, Australia, has been analyzed to explore the statistical characteristics of the convective cell heights. The statistics for the monsoon and break regimes are significantly different with the break season cells being higher for a given reflectivity threshold. The monsoon cells produce more rain, but there are fewer intense cells and there is a much larger contribution from stratiform rain. The monsoon cells are also slightly larger, but shorter lived than the breaks. The shorter lifetime may reflect a more rapid transition to a longer-lived stratiform character. The monsoon regime is shown to be associated with large-scale ascent and higher humidity that may lead to more frequent, but weaker cells. Within regimes, the subset of intense cells generally reach near the tropopause or overshoot. However, there is little evidence in the data for a multimodal distribution of cell heights, except perhaps for the intense monsoon cases. Instead, the picture is a continuous distribution of cell heights with the peak of the distribution shifting to higher values as the distributions are conditioned on higher reflectivity.

Full access
Peter T. May and Deepak K. Rajopadhyaya

Abstract

Data from a wind profiler located at Darwin, Australia, have been used to examine the vertical motions and precipitation microphysics in a well-developed squall line. Both a mature and developing convective cell are well sampled. The vertical motions within the mature cell are dominated by the effect of glaciation and a convective downdraft feeding a cold pool. The strong updrafts are accompanied by supercooled water as much as 2 km above the freezing level. The two cells are separated by a narrow region of deep descent. The developing cell has a low-level maximum in upward motion coinciding with high radar reflectivity below 3 km, suggesting warm rain processes. There is a large transition region with deep descent and a stratiform region with a classic up- and downdraft circulation. The precipitation characteristics show the aggregation of ice particles as they descend in the stratiform region. Over half of the rain is seen to evaporate between 4 and 2 km. The cooling implied by this and the heating by the growth of ice particulates above the melting level balance the mesoscale circulation in the stratiform region. The Q 1, heating profile is consistent with previous studies above 4 km but shows a net cooling below this. This may in part be due to the storm being sampled when the system was mature with extensive convective downdrafts.

Full access
Peter T. May and Deepak K. Rajopadhyaya
Full access
Acacia S. Pepler and Peter T. May

Abstract

Rainfall estimation using polarimetric radar involves the combination of a number of estimators with differing error characteristics to optimize rainfall estimates at all rain rates. In Part I of this paper, a new technique for such combinations was proposed that weights algorithms by the inverse of their theoretical errors. In this paper, the derived algorithms are validated using the “CP2” polarimetric radar in Queensland, Australia, and a collocated rain gauge network for two heavy-rain events during November 2008 and a larger statistical analysis that is based on data from between 2007 and 2009. Use of a weighted combination of polarimetric algorithms offers some improvement over composite methods that are based on decision-tree logic, particularly at moderate to high rain rates and during severe-thunderstorm events.

Full access
Peter T. May and James M. Wilczak

Abstract

A wind profiler-radio acoustic sounding system at Denver collected hourly wind and virtual-temperature data through the boundary layer in the latter half of 1989. Analyzed monthly averages of 24-h time-height cross sections of the daily measurements show a number of significant features. The growth of the nocturnal temperature inversion is observed, followed by a rapid transition to a deep daytime mixed layer. The progression from a strong diurnal temperature signal in the summer to weak diurnal variability in the winter is documented. A mean upslope wind component is found in the middle-to-late afternoon in the summer and autumn months, with a reverse, return flow aloft. Boundary-layer winds show a strong inertial oscillation, with the phase closely following the diurnal heating cycle. Perturbation winds in the return-flow region aloft oscillate almost 180° out of phase with the boundary-layer winds.

Full access