Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Richard T. Austin x
  • User-accessible content x
Clear All Modify Search
Seiji Kato, Gerald G. Mace, Eugene E. Clothiaux, James C. Liljegren, and Richard T. Austin

Abstract

A cloud particle size retrieval algorithm that uses radar reflectivity factor and Doppler velocity obtained by a 35-GHz Doppler radar and liquid water path estimated from microwave radiometer radiance measurements is developed to infer the size distribution of stratus cloud particles. Assuming a constant, but unknown, number concentration with height, the algorithm retrieves the number concentration and vertical profiles of liquid water content and particle effective radius. A novel aspect of the retrieval is that it depends upon an estimated particle median radius vertical profile that is derived from a statistical model that relates size to variations in particle vertical velocity; the model posits that the median particle radius is proportional to the fourth root of the particle velocity variance if the radii of particles in a parcel of zero vertical velocity is neglected. The performance of the retrieval is evaluated using data from two stratus case study days 1.5 and 8.0 h in temporal extent. Aircraft in situ microphysical measurements were available on one of the two days and the retrieved number concentrations and effective radii are consistent with them. The retrieved liquid water content and effective radius increase with height for both stratus cases, which agree with earlier studies. Error analyses suggest that the error in the liquid water content vanishes and the magnitudes of the fractional error in the effective radius and shortwave extinction coefficient computed from retrieved cloud particle size distributions are half of the magnitudes of the fractional error in the estimated cloud particle median radius if the fractional error in the median radius is constant with height.

Full access
Andrew J. Heymsfield, Alain Protat, Dominique Bouniol, Richard T. Austin, Robin J. Hogan, Julien Delanoë, Hajime Okamoto, Kaori Sato, Gerd-Jan van Zadelhoff, David P. Donovan, and Zhien Wang

Abstract

Vertical profiles of ice water content (IWC) can now be derived globally from spaceborne cloud satellite radar (CloudSat) data. Integrating these data with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data may further increase accuracy. Evaluations of the accuracy of IWC retrieved from radar alone and together with other measurements are now essential. A forward model employing aircraft Lagrangian spiral descents through mid- and low-latitude ice clouds is used to estimate profiles of what a lidar and conventional and Doppler radar would sense. Radar reflectivity Ze and Doppler fall speed at multiple wavelengths and extinction in visible wavelengths were derived from particle size distributions and shape data, constrained by IWC that were measured directly in most instances. These data were provided to eight teams that together cover 10 retrieval methods. Almost 3400 vertically distributed points from 19 clouds were used. Approximate cloud optical depths ranged from below 1 to more than 50. The teams returned retrieval IWC profiles that were evaluated in seven different ways to identify the amount and sources of errors. The mean (median) ratio of the retrieved-to-measured IWC was 1.15 (1.03) ± 0.66 for all teams, 1.08 (1.00) ± 0.60 for those employing a lidar–radar approach, and 1.27 (1.12) ± 0.78 for the standard CloudSat radar–visible optical depth algorithm for Ze > −28 dBZe. The ratios for the groups employing the lidar–radar approach and the radar–visible optical depth algorithm may be lower by as much as 25% because of uncertainties in the extinction in small ice particles provided to the groups. Retrievals from future spaceborne radar using reflectivity–Doppler fall speeds show considerable promise. A lidar–radar approach, as applied to measurements from CALIPSO and CloudSat, is useful only in a narrow range of ice water paths (IWP) (40 < IWP < 100 g m−2). Because of the use of the Rayleigh approximation at high reflectivities in some of the algorithms and differences in the way nonspherical particles and Mie effects are considered, IWC retrievals in regions of radar reflectivity at 94 GHz exceeding about 5 dBZe are subject to uncertainties of ±50%.

Full access

THE CLOUDSAT MISSION AND THE A-TRAIN

A New Dimension of Space-Based Observations of Clouds and Precipitation

Graeme L. Stephens, Deborah G. Vane, Ronald J. Boain, Gerald G. Mace, Kenneth Sassen, Zhien Wang, Anthony J. Illingworth, Ewan J. O'connor, William B. Rossow, Stephen L. Durden, Steven D. Miller, Richard T. Austin, Angela Benedetti, Cristian Mitrescu, and the CloudSat Science Team

CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA–CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the CALIPSO lidar footprint and the other measurements of the constellation. The precision and near simultaneity of this overlap creates a unique multisatellite observing system for studying the atmospheric processes essential to the hydrological cycle.

The vertical profiles of cloud properties provided by CloudSat on the global scale fill a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring these profiles requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with data from other active and passive sensors of the constellation. This paper describes the underpinning science and general overview of the mission, provides some idea of the expected products and anticipated application of these products, and the potential capability of the A-Train for cloud observations. Notably, the CloudSat mission is expected to stimulate new areas of research on clouds. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA's JPL, the Canadian Space Agency, Colorado State University, the U.S. Air Force, and the U.S. Department of Energy.

Full access
Leo J. Donner, Bruce L. Wyman, Richard S. Hemler, Larry W. Horowitz, Yi Ming, Ming Zhao, Jean-Christophe Golaz, Paul Ginoux, S.-J. Lin, M. Daniel Schwarzkopf, John Austin, Ghassan Alaka, William F. Cooke, Thomas L. Delworth, Stuart M. Freidenreich, C. T. Gordon, Stephen M. Griffies, Isaac M. Held, William J. Hurlin, Stephen A. Klein, Thomas R. Knutson, Amy R. Langenhorst, Hyun-Chul Lee, Yanluan Lin, Brian I. Magi, Sergey L. Malyshev, P. C. D. Milly, Vaishali Naik, Mary J. Nath, Robert Pincus, Jeffrey J. Ploshay, V. Ramaswamy, Charles J. Seman, Elena Shevliakova, Joseph J. Sirutis, William F. Stern, Ronald J. Stouffer, R. John Wilson, Michael Winton, Andrew T. Wittenberg, and Fanrong Zeng

Abstract

The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.

Full access