Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: Virendra Ghate x
  • User-accessible content x
Clear All Modify Search
Virendra P. Ghate and Pavlos Kollias

Abstract

The Amazon plays an important role in the global energy and hydrological budgets. The precipitation during the dry season (June–September) plays a critical role in maintaining the extent of the rain forest. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF-1) in the context of the Green Ocean Amazon (GOAmazon) field campaign at Manacapuru, Brazil, provided comprehensive measurements of surface, cloud, precipitation, radiation, and thermodynamic properties for two complete dry seasons (2014 and 2015). The precipitation events occurring during the nighttime were associated with propagating storm systems (nonlocal effects), while the daytime precipitation events were primarily a result of local land–atmosphere interactions. During the two dry seasons, precipitation was recorded at the surface on 106 days (43%) from 158 rain events with 82 daytime precipitation events occurring on 64 days (60.37%). Detailed comparisons between the diurnal cycles of surface and profile properties between days with and without daytime precipitation suggested the increased moisture at low and midlevels to be responsible for lowering the lifting condensation level, reducing convective inhibition and entrainment, and thus triggering the transition from shallow to deep convection. Although the monthly accumulated rainfall decreased during the progression of the dry season, the contribution of daytime precipitation to it increased, suggesting the decrease to be mainly due to reduction in propagating squall lines. The control of daytime precipitation during the dry season on large-scale moisture advection above the boundary layer and the total rainfall on propagating squall lines suggests that coarse-resolution models should be able to accurately simulate the dry season precipitation over the Amazon basin.

Full access
Bruce Albrecht, Ming Fang, and Virendra Ghate

Abstract

Observations made at the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains (SGP) site during uniform nonprecipitating stratocumulus cloud conditions for a 14-h period are used to examine cloud-top entrainment processes and parameterizations. The observations from a vertically pointing Doppler cloud radar provide estimates of vertical velocity variance and energy dissipation rate (EDR) terms in the parameterized turbulent kinetic energy (TKE) budget of the entrainment zone. Hourly averages of the vertical velocity variance term in the TKE entrainment formulation correlated strongly (r = 0.72) with the dissipation rate term in the entrainment zone, with an increased correlation (r = 0.92) when accounting for the nighttime decoupling of the boundary layer. Independent estimates of entrainment rates were obtained from an inversion-height budget using the local time derivative and horizontal advection of cloud-top height together with large-scale vertical velocity at the boundary layer inversion from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis model. The mean entrainment rate from the inversion-height budget during the 14-h period was 0.74 ± 0.15 cm s−1 and was used to calculate bulk coefficients for entrainment parameterizations based on convective velocity scale w* and TKE budgets of the entrainment zone. The hourly values of entrainment rates calculated using these coefficients exhibited good agreement with those calculated from the inversion-height budget associated with substantial changes in surface buoyancy production and cloud-top radiative cooling. The results indicate a strong potential for making entrainment rate estimates directly from radar vertical velocity variance and the EDR measurements.

Full access
Virendra P. Ghate, Mark A. Miller, and Ping Zhu

Abstract

Marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%–70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s−1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures.

Full access
Mark A. Miller, Virendra P. Ghate, and Robert K. Zahn

Abstract

Continuous measurements of the shortwave (SW), longwave (LW), and net cross-atmosphere radiation flux divergence over the West African Sahel were made during the year 2006 using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and the Geostationary Earth Radiation Budget (GERB) satellite. Accompanying AMF measurements enabled calculations of the LW, SW, and net top of the atmosphere (TOA) and surface cloud radiative forcing (CRF), which quantifies the radiative effects of cloud cover on the column boundaries. Calculations of the LW, SW, and net cloud radiative effect (CRE), which is the difference between the TOA and surface radiative flux divergences in all-sky and clear-sky conditions, quantify the radiative effects on the column itself. These measurements were compared to predictions in four global climate models (GCMs) used in the Intergovernmental Panel for Climate Change Fourth Assessment Report (IPCC AR4). All four GCMs produced wet and dry seasons, but reproducing the SW column radiative flux divergence was problematic in the GCMs and SW discrepancies translated into discrepancies in the net radiative flux divergence. Computing cloud-related quantities from the measurements produced yearly averages of the SW TOA CRF, surface CRF, and CRE of ~−19, −83, and 47 W m−2, respectively, and yearly averages of the LW TOA CRF, surface CRF, and CRE of ~39, 37, and 2 W m−2. These quantities were analyzed in two GCMs and compensating errors in the SW and LW clear-sky, cross-atmosphere radiative flux divergence were found to conspire to produce somewhat reasonable predictions of the net clear-sky divergence. Both GCMs underestimated the surface LW and SW CRF and predicted near-zero SW CRE when the measured values were substantially larger (~70 W m−2 maximum).

Full access
Virendra P. Ghate, Bruce A. Albrecht, Christopher W. Fairall, and Robert A. Weller

Abstract

A 5-yr climatology of the meteorology, including boundary layer cloudiness, for the southeast Pacific region is presented using observations from a buoy located at 20°S, 85°W. The sea surface temperature and surface air temperature exhibit a sinusoidal seasonal cycle that is negatively correlated with surface pressure. The relative humidity, wind speed, and wind direction show little seasonal variability. But the advection of cold and dry air from the southeast varies seasonally and is highly correlated with the latent heat flux variations. A simple model was used to estimate the monthly cloud fraction using the observed surface downwelling longwave radiative flux and surface meteorological parameters. The annual cycle of cloud fraction is highly correlated to that of S. A. Klein: lower-tropospheric stability parameter (0.87), latent heat flux (−0.59), and temperature and moisture advection (0.60). The derived cloud fraction compares poorly with the International Satellite Cloud Climatology Project (ISCCP)-derived low-cloud cover but compares well (0.86 correlation) with ISCCP low- plus middle-cloud cover. The monthly averaged diurnal variations in cloud fraction show marked seasonal variability in the amplitude and temporal structure. The mean annual cloud fraction is lower than the mean annual nighttime cloud fraction by about 9%. Annual and diurnal cycles of surface longwave and shortwave cloud radiative forcing were also estimated. The longwave cloud radiative forcing is about 45 W m−2 year-round, but, because of highly negative shortwave cloud radiative forcing, the net cloud radiative forcing is always negative with an annual mean of −50 W m−2.

Full access
Jothiram Vivekanandan, Virendra P. Ghate, Jorgen B. Jensen, Scott M. Ellis, and M. Christian Schwartz

Abstract

This paper describes a technique for estimating the liquid water content (LWC) and a characteristic particle diameter in stratocumulus clouds using radar and lidar observations. The uncertainty in LWC estimate from radar and lidar measurements is significantly reduced once the characteristic particle diameter is known. The technique is independent of the drop size distribution. It is applicable for a broad range of W-band reflectivity Z between −30 and 0 dBZ and all values of lidar backscatter β observations. No partitioning of cloud or drizzle is required on the basis of an arbitrary threshold of Z as in prior studies. A method for estimating droplet diameter and LWC was derived from the electromagnetic simulations of radar and lidar observations. In situ stratocumulus cloud and drizzle probe spectra were input to the electromagnetic simulation. The retrieved droplet diameter and LWC were validated using in situ measurements from the southeastern Pacific Ocean. The retrieval method was applied to radar and lidar measurements from the northeastern Pacific. Uncertainty in the retrieved droplet diameter and LWC that are due to the measurement errors in radar and lidar backscatter measurements are 7% and 14%, respectively. The retrieved LWC was validated using the concurrent G-band radiometer estimates of the liquid water path.

Open access
Virendra P. Ghate, Mark A. Miller, Bruce A. Albrecht, and Christopher W. Fairall

Abstract

Stratocumulus-topped boundary layers (STBLs) observed in three different regions are described in the context of their thermodynamic and radiative properties. The primary dataset consists of 131 soundings from the southeastern Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic, and 83 soundings from the U.S. Southern Great Plains (SGP). A new technique that makes an attempt to preserve the depths of the sublayers within an STBL is proposed for averaging the profiles of thermodynamic and radiative variables. A one-dimensional radiative transfer model known as the Rapid Radiative Transfer Model was used to compute the radiative fluxes within the STBL. The SEP STBLs were characterized by a stronger and deeper inversion, together with thicker clouds, lower free-tropospheric moisture, and higher radiative flux divergence across the cloud layer, as compared to the GRW STBLs. Compared to the STBLs over the marine locations, the STBLs over SGP had higher wind shear and a negligible (−0.41 g kg−1) jump in mixing ratio across the inversion. Despite the differences in many of the STBL thermodynamic parameters, the differences in liquid water path at the three locations were statistically insignificant. The soundings were further classified as well mixed or decoupled based on the difference between the surface and cloud-base virtual potential temperature. The decoupled STBLs were deeper than the well-mixed STBLs at all three locations. Statistically insignificant differences in surface latent heat flux (LHF) between well-mixed and decoupled STBLs suggest that parameters other than LHF are responsible for producing decoupling.

Full access
Mampi Sarkar, Paquita Zuidema, Bruce Albrecht, Virendra Ghate, Jorgen Jensen, Johannes Mohrmann, and Robert Wood

Abstract

Three genuine stratocumulus-to-cumulus transitions sampled during the Cloud System Evolution over the Trades (CSET) campaign are documented. The focus is on Lagrangian evolution of in situ precipitation, thought to exceed radar/lidar retrieved values because of Mie scattering. Two of the three initial stratocumulus cases are pristine [cloud droplet number concentrations (N d) of ~22 cm−3] but occupied boundary layers of different depths, while the third is polluted (N d ~ 225 cm−3). Hourly satellite-derived cloud fraction along Lagrangian trajectories indicate that more quickly deepening boundary layers tend to transition faster, into more intense but more occasional precipitation. These transitions begin either in the morning or late afternoon, suggesting that preceding night processes can precondition or delay the inevitable transition. The precipitation shifts toward larger drop sizes throughout the transition as the boundary layers deepen, with aerosol concentrations only diminishing in two of the three cases. Ultraclean (N d < 1 cm−3) cumulus clouds evolved from pristine stratocumulus cloud with unusually high precipitation rates occupying a shallow, well-mixed boundary layer. Results from a simple one-dimensional evaporation model and from radar/lidar retrievals suggest subcloud evaporation likely increases throughout the transition. This, coupled with larger drop sizes capable of lowering the latent cooling profile, facilitates the transition to more surface-driven convection. The coassociation between boundary layer depth and precipitation does not provide definitive conclusions on the isolated effect of precipitation on the pace of the transition. Differences between the initial conditions of the three examples provide opportunities for further modeling studies.

Free access
Virendra P. Ghate, Bruce A. Albrecht, Mark A. Miller, Alan Brewer, and Christopher W. Fairall

Abstract

Observations made during a 24-h period as part of the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) are analyzed to study the radiation and turbulence associated with the stratocumulus-topped marine boundary layer (BL). The first 14 h exhibited a well-mixed (coupled) BL with an average cloud-top radiative flux divergence of ~130 W m−2; the BL was decoupled during the last 10 h with negligible radiative flux divergence. The averaged radiative cooling very close to the cloud top was −9.04 K h−1 in coupled conditions and −3.85 K h−1 in decoupled conditions. This is the first study that combined data from a vertically pointing Doppler cloud radar and a Doppler lidar to yield the vertical velocity structure of the entire BL. The averaged vertical velocity variance and updraft mass flux during coupled conditions were higher than those during decoupled conditions at all levels by a factor of 2 or more. The vertical velocity skewness was negative in the entire BL during coupled conditions, whereas it was weakly positive in the lower third of the BL and negative above during decoupled conditions. A formulation of velocity scale is proposed that includes the effect of cloud-top radiative cooling in addition to the surface buoyancy flux. When scaled by the velocity scale, the vertical velocity variance and coherent downdrafts had similar magnitude during the coupled and decoupled conditions. The coherent updrafts that exhibited a constant profile in the entire BL during both the coupled and decoupled conditions scaled well with the convective velocity scale to a value of ~0.5.

Full access
Johannes Mohrmann, Christopher S. Bretherton, Isabel L. McCoy, Jeremy McGibbon, Robert Wood, Virendra Ghate, Bruce Albrecht, Mampi Sarkar, Paquita Zuidema, and Rabindra Palikonda

Abstract

Flight data from the Cloud System Evolution over the Trades (CSET) campaign over the Pacific stratocumulus-to-cumulus transition are organized into 18 Lagrangian cases suitable for study and future modeling, made possible by the use of a track-and-resample flight strategy. Analysis of these cases shows that 2-day Lagrangian coherence of long-lived species (CO and O3) is high (r = 0.93 and 0.73, respectively), but that of subcloud aerosol, MBL depth, and cloud properties is limited. Although they span a wide range in meteorological conditions, most sampled air masses show a clear transition when considering 2-day changes in cloudiness (−31% averaged over all cases), MBL depth (+560 m), estimated inversion strength (EIS; −2.2 K), and decoupling, agreeing with previous satellite studies and theory. Changes in precipitation and droplet number were less consistent. The aircraft-based analysis is augmented by geostationary satellite retrievals and reanalysis data along Lagrangian trajectories between aircraft sampling times, documenting the evolution of cloud fraction, cloud droplet number concentration, EIS, and MBL depth. An expanded trajectory set spanning the summer of 2015 is used to show that the CSET-sampled air masses were representative of the season, with respect to EIS and cloud fraction. Two Lagrangian case studies attractive for future modeling are presented with aircraft and satellite data. The first features a clear Sc–Cu transition involving MBL deepening and decoupling with decreasing cloud fraction, and the second undergoes a much slower cloud evolution despite a greater initial depth and decoupling state. Potential causes for the differences in evolution are explored, including free-tropospheric humidity, subsidence, surface fluxes, and microphysics.

Free access