Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: William E. Evans x
  • User-accessible content x
Clear All Modify Search
Sidney M. Serebreny, Eldon J. Wiegman, Rex G. Hadfield, and William E. Evans

An electronic system to study ATS photographs is described. Cloud pictures are scanned by a TV camera which inputs cloud data onto memory discs from which the data can be recalled and displayed on a cathode-ray tube. Display options include time-lapse, variable magnification and frame-to-frame differencing. Electronic cursors permit digital readout of displacements of identifiable cloud elements. Data handling techniques and the computer-data process for this system are described.

Full access
Robert F. Cahalan, Lazaros Oreopoulos, Alexander Marshak, K. Franklin Evans, Anthony B. Davis, Robert Pincus, Ken H. Yetzer, Bernhard Mayer, Roger Davies, Thomas P. Ackerman, Howard W. Barker, Eugene E. Clothiaux, Robert G. Ellingson, Michael J. Garay, Evgueni Kassianov, Stefan Kinne, Andreas Macke, William O'hirok, Philip T. Partain, Sergei M. Prigarin, Alexei N. Rublev, Graeme L. Stephens, Frederic Szczap, Ezra E. Takara, Tamas Várnai, Guoyong Wen, and Tatiana B. Zhuravleva

The interaction of clouds with solar and terrestrial radiation is one of the most important topics of climate research. In recent years it has been recognized that only a full three-dimensional (3D) treatment of this interaction can provide answers to many climate and remote sensing problems, leading to the worldwide development of numerous 3D radiative transfer (RT) codes. The international Intercomparison of 3D Radiation Codes (I3RC), described in this paper, sprung from the natural need to compare the performance of these 3D RT codes used in a variety of current scientific work in the atmospheric sciences. I3RC supports intercomparison and development of both exact and approximate 3D methods in its effort to 1) understand and document the errors/limits of 3D algorithms and their sources; 2) provide “baseline” cases for future code development for 3D radiation; 3) promote sharing and production of 3D radiative tools; 4) derive guidelines for 3D radiative tool selection; and 5) improve atmospheric science education in 3D RT. Results from the two completed phases of I3RC have been presented in two workshops and are expected to guide improvements in both remote sensing and radiative energy budget calculations in cloudy atmospheres.

Full access
Clark Evans, Kimberly M. Wood, Sim D. Aberson, Heather M. Archambault, Shawn M. Milrad, Lance F. Bosart, Kristen L. Corbosiero, Christopher A. Davis, João R. Dias Pinto, James Doyle, Chris Fogarty, Thomas J. Galarneau Jr., Christian M. Grams, Kyle S. Griffin, John Gyakum, Robert E. Hart, Naoko Kitabatake, Hilke S. Lentink, Ron McTaggart-Cowan, William Perrie, Julian F. D. Quinting, Carolyn A. Reynolds, Michael Riemer, Elizabeth A. Ritchie, Yujuan Sun, and Fuqing Zhang

Abstract

Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, some challenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication.

Open access
Dennis Baldocchi, Eva Falge, Lianhong Gu, Richard Olson, David Hollinger, Steve Running, Peter Anthoni, Ch. Bernhofer, Kenneth Davis, Robert Evans, Jose Fuentes, Allen Goldstein, Gabriel Katul, Beverly Law, Xuhui Lee, Yadvinder Malhi, Tilden Meyers, William Munger, Walt Oechel, K. T. Paw U, Kim Pilegaard, H. P. Schmid, Riccardo Valentini, Shashi Verma, Timo Vesala, Kell Wilson, and Steve Wofsy

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S.

FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite.

Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange of temperate broadleaved forests increases by about 5.7 g C m−2 day−1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.

Full access