Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Yi Xiao x
  • User-accessible content x
Clear All Modify Search
Xiao-Yi Yang and Xiaojun Yuan

Abstract

This study reveals that sea ice in the Barents and Kara Seas plays a crucial role in establishing a new Arctic coupled climate system. The early winter sea ice before 1998 shows double dipole patterns over the Arctic peripheral seas. This pattern, referred to as the early winter quadrupole pattern, exhibits the anticlockwise sequential sea ice anomalies propagation from the Greenland Sea to the Barents–Kara Seas and to the Bering Sea from October to December. This early winter in-phase ice variability contrasts to the out-of-phase relationship in late winter. The mean temperature advection and stationary wave heat flux divergence associated with the atmospheric zonal wave-2 pattern are responsible for the early winter in-phase pattern.

Since the end of the last century, the early winter quadrupole pattern has broken down because of the rapid decline of sea ice extent in the Barents–Kara Seas. This remarkable ice retreat modifies the local ocean–atmosphere heat exchange, forcing an anomalous low air pressure over the Barents–Kara Seas. The subsequent collapse of the atmospheric zonal wave-2 pattern is likely responsible for the breakdown of the early winter sea ice quadrupole pattern after 1998. Therefore, the sea ice anomalies in the Barents–Kara Seas play a key role in establishing new atmosphere–sea ice coupled relationships in the warming Arctic.

Full access
Xiao-Yi Yang, Xiaojun Yuan, and Mingfang Ting

Abstract

The recent accelerated Arctic sea ice decline has been proposed as a possible forcing factor for midlatitude circulation changes, which can be projected onto the Arctic Oscillation (AO) and/or North Atlantic Oscillation (NAO) mode. However, the timing and physical mechanisms linking AO responses to the Arctic sea ice forcing are not entirely understood. In this study, the authors suggest a connection between November sea ice extent in the Barents and Kara Seas and the following winter’s atmospheric circulation in terms of the fast sea ice retreat and the subsequent modification of local air–sea heat fluxes. In particular, the dynamical processes that link November sea ice in the Barents and Kara Seas with the development of AO anomalies in February is explored. In response to the lower-tropospheric warming associated with the initial thermal effect of the sea ice loss, the large-scale atmospheric circulation goes through a series of dynamical adjustment processes: The decelerated zonal-mean zonal wind anomalies propagate gradually from the subarctic to midlatitudes in about one month. The equivalent barotropic AO dipole pattern develops in January because of wave–mean flow interaction and firmly establishes itself in February following the weakening and warming of the stratospheric polar vortex. This connection between sea ice loss and the AO mode is robust on time scales ranging from interannual to decadal. Therefore, the recent winter AO weakening and the corresponding midlatitude climate change may be partly associated with the early winter sea ice loss in the Barents and Kara Seas.

Full access
Tomasz J. Glowacki, Yi Xiao, and Peter Steinle

Abstract

An operational surface analysis system for the continent of Australia is presented. The system is specifically designed to mitigate problems that arise when analyzing surface data with a highly inhomogeneous distribution. Hourly analyses of atmospheric pressure at mean sea level, potential temperature, 2-m dewpoint temperature, and 10-m wind components are generated on a ~4-km grid. The system employs a statistical interpolation technique using observations of pressure, temperature, dewpoint, and wind data. The problem of data gaps in space and time is addressed by introducing pseudo-observations. For stations missing a report at analysis time, estimates are reconstructed by interpolating off-time reports. Underobserved areas in the network are identified from precalculated, gridded observation densities for each analysis time, which also yield weights to combine preliminary analysis and first-guess data into pseudo-observations. A regression-based pressure reduction technique, consistent with local reductions at observing sites and devised specifically for this system, is used for accurate and fast conversion of pressure and, indirectly, temperature variables within the system. Analysis accuracy is verified by withholding observations for specific periods. Analyzed fields are shown to be significantly more accurate than the current operational numerical model fields used as a first guess for the high-resolution surface analysis. The system design and analysis accuracies are also assessed within this context and compared with similar overseas developments.

Full access
Yimin Ma, Noel E. Davidson, Yi Xiao, and Jian-Wen Bao

Abstract

In high-wind conditions, sea spray, in conjunction with a generally decreasing drag coefficient for increasing winds, greatly modulates surface heat and momentum fluxes. It has been suggested that the process can be particularly important for the prediction of tropical cyclones (TCs), yet its robust application in operational forecast systems has remained elusive. A sea spray inclusion scheme and a modified algorithm for momentum exchange have been implemented in the Australian Bureau of Meteorology’s current operational TC model. Forecasts for a limited sample of TCs demonstrate that the revised parameterizations improve initialized and forecast intensities, while mostly maintaining track prediction skill. TC Yasi (2011) has been studied for impacts of the revised parameterization on rapid intensification (RI). Compared with the conventional bulk air–sea exchange parameterization, the revised version simulates a cooler and moister region near the surface in the eyewall/eye region, adjusts the RI evolution by an earlier and stronger subsidence in the eye, and simulates a stronger radial pulsating of the eye and eyewall convection on relatively short time scales. The inclusion of the new scheme enhances RI features characterized by eyewall ascent, radial convergence, and inertial stability inside the radius of azimuthal-mean maximum wind over low- to midlevels, and by a ringlike radial distribution of relative vorticity above the boundary layer. In addition, it allows a higher maximum intensity wind speed based on Emanuel’s maximum potential intensity theory. It is shown that, as expected, this is mainly because of a larger ratio of enthalpy and momentum exchange coefficients.

Full access
Susan Rennie, Peter Steinle, Alan Seed, Mark Curtis, and Yi Xiao

Abstract

A new quality control system, primarily using a naïve Bayesian classifier, has been developed to enable the assimilation of radial velocity observations from Doppler radar. The ultimate assessment of this system is the assimilation of observations in a pseudo-operational numerical weather prediction system during the Sydney 2014 Forecast Demonstration Project. A statistical analysis of the observations assimilated during this period provides an assessment of the data quality. This will influence how observations will be assimilated in the future, and what quality control and errors are applicable. This study compares observation-minus-background statistics for radial velocities from precipitation and insect echoes. The results show that with the applied level of quality control, these echo types have comparable biases. With the latest quality control, the clear air observations of wind are apparently of similar quality to those from precipitation and are therefore suitable for use in high-resolution NWP assimilation systems.

Full access
Oleg A. Saenko, Xiao-Yi Yang, Matthew H. England, and Warren G. Lee

Abstract

Subduction, water mass transformation, and transport rates in the Indo-Pacific Ocean are diagnosed in a recent version of the Canadian Centre for Climate Modelling and Analysis coupled model. It is found that the subduction across the base of the winter mixed layer is dominated by the lateral transfer, particularly within the relatively dense water classes corresponding to the densest mode and intermediate waters. However, within lighter densities, including those characterizing the lighter varieties of mode waters, the vertical transfer has a strong positive input to the net subduction. The upper-ocean volume transports across 30°N and 32°S are largest within the density classes that correspond to mode waters. In the North Pacific, the buoyancy flux converts the near-surface waters mostly to denser water classes, whereas in the Southern Ocean the surface waters are transformed both to lighter and denser water classes, depending on the density. In response to a doubling of CO2, the subduction, transformation, and transport of mode waters in both hemispheres shift to lighter densities but do not change significantly, whereas the subduction of intermediate waters decreases. The area of large winter mixed layer depths decreases, particularly in the Southern Hemisphere. In the low latitudes, the thermocline water flux that enters the tropical Pacific via the western boundary flows generally increases. However, its anomaly has a complex structure, so that integrated estimates can be sensitive to the isopycnal ranges. The upper part of the Equatorial Undercurrent (EUC) strengthens in the warmer climate, whereas its lower part weakens. The anomaly in the EUC closely follows the anomaly in stratification along the equator. The Indonesian Throughflow transport decreases with part of it being redirected eastward. This part joins with the intensified equatorward thermocline flows at the western boundaries and contributes to the EUC anomaly.

Full access
Jun-Jie Chang, Yi-Ming Wei, Xiao-Chen Yuan, Hua Liao, and Bi-Ying Yu

Abstract

China, the second largest economy in the world, covers a large area spanning multiple climate zones, with varying economic conditions across regions. Given this variety in climate and economic conditions, global warming is expected to have heterogeneous economic impacts across the country. This study uses annual average temperature to conduct an empirical research from a top-down perspective to evaluate the nonlinear impacts of temperature change on aggregate economic output in China. We find that there is an inverted U-shaped relationship between temperature and economic growth at the provincial level, with a turning point at 12.2°C. The regional and national economic impacts are projected under the shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs). As future temperature rises, the economic impacts are positive in the northeast, north, and northwest regions but negative in the south, east, central, and southwest regions. Based on SSP5, the decrement in the GDP per capita of China would reach 16.0% under RCP2.6 and 27.0% under RCP8.5.

Restricted access
John Le Marshall, Rolf Seecamp, Yi Xiao, Paul Gregory, Jim Jung, Peter Stienle, Terry Skinner, Chris Tingwell, and Tan Le

Abstract

Atmospheric motion vectors (AMVs) have been generated continuously from Multifunctional Transport Satellite 1 Replacement (MTSAT-1R) radiance data (imagery) since 2005, and more recently from MTSAT-2, which are operated by the Japan Meteorological Agency (JMA). These are the primary geostationary meteorological satellites observing the western Pacific, Asia, and the Australian region. The vectors are used operationally, for analysis in the Darwin Regional Forecast Office. The near-continuous AMVs have been stringently error characterized and used in near-real-time trials to gauge their impact on operational regional numerical weather prediction (NWP), using four-dimensional variational data assimilation (4DVAR). The use of these locally generated hourly vectors (the only hourly AMV source in the region at the time) and 4DVAR has resulted in both improved temporal and spatial data coverage in the operational regional forecast domain. The beneficial impact of these data on the Bureau of Meteorology’s (Bureau’s) current operational system is described. After these trials, the hourly MTSAT AMVs were introduced into the Bureau’s National Meteorological and Oceanographic Centre’s (NMOC) operational NWP suite for use by the operational Australian Community Climate Earth System Simulator (ACCESS) regional and global models, ACCESS-R and ACCESS-G, respectively. Examples of their positive impact on both midlatitude and tropical cyclone forecasts are presented.

Full access
Noel E. Davidson, Yi Xiao, Yimin Ma, Harry C. Weber, Xudong Sun, Lawrie J. Rikus, Jeff D. Kepert, Peter X. Steinle, Gary S. Dietachmayer, Charlie C. F. Lok, James Fraser, Joan Fernon, and Hakeem Shaik

Abstract

The Australian Community Climate and Earth System Simulator (ACCESS) has been adapted for operational and research applications on tropical cyclones. The base system runs at a resolution of 0.11° and 50 levels. The domain is relocatable and nested in coarser-resolution ACCESS forecasts. Initialization consists of five cycles of four-dimensional variational data assimilation (4DVAR) over 24 h. Forecasts to 72 h are made. Without vortex specification, initial conditions usually contain a weak and misplaced circulation pattern. Significant effort has been devoted to building physically based, synthetic inner-core structures, validated using historical dropsonde data and surface analyses from the Atlantic. Based on estimates of central pressure and storm size, vortex specification is used to filter the analyzed circulation from the original analysis, construct an inner core of the storm, locate it to the observed position, and merge it with the large-scale analysis at outer radii.

Using all available conventional observations and only synthetic surface pressure observations from the idealized vortex to correct the initial location and structure of the storm, the 4DVAR builds a balanced, intense 3D vortex with maximum wind at the radius of maximum wind and with a well-developed secondary circulation. Mean track and intensity errors for Australian region and northwest Pacific storms have been encouraging, as are recent real-time results from the Australian National Meteorological and Oceanographic Centre. The system became fully operational in November 2011. From preliminary diagnostics, some interesting structure change features are illustrated. Current limitations, future enhancements, and research applications are also discussed.

Full access