Search Results

You are looking at 11 - 20 of 26 items for

  • Author or Editor: Christopher W. Fairall x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Simon P. de Szoeke
,
Christopher W. Fairall
,
Daniel E. Wolfe
,
Ludovic Bariteau
, and
Paquita Zuidema

Abstract

A new dataset synthesizes in situ and remote sensing observations from research ships deployed to the southeastern tropical Pacific stratocumulus region for 7 years in boreal fall. Surface meteorology, turbulent and radiative fluxes, aerosols, cloud properties, and rawinsonde profiles were measured on nine ship transects along 20°S from 75° to 85°W. Fluxes at the ocean surface are essential to the equilibrium SST. Solar radiation is the only warming net heat flux, with 180–200 W m−2 in boreal fall. The strongest cooling is evaporation (60–100 W m−2), followed by net thermal infrared radiation (30 W m−2) and sensible heat flux (<10 W m−2). The 70 W m−2 imbalance of heating at the surface reflects the seasonal SST tendency and some 30 W m−2 cooling that is mostly due to ocean transport.

Coupled models simulate significant SST errors in the eastern tropical Pacific Ocean. Three different observation-based gridded ocean surface flux products agree with ship and buoy observations, while fluxes simulated by 15 Coupled Model Intercomparison Project phase 3 [CMIP3; used for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report] general circulation models have relatively large errors. This suggests the gridded observation-based flux datasets are sufficiently accurate for verifying coupled models. Longwave cooling and solar warming are correlated among model simulations, consistent with cloud radiative forcing and low cloud amount differences. In those simulations with excessive solar heating, elevated SST also results in larger evaporation and longwave cooling to compensate for the solar excess. Excessive turbulent heat fluxes (10–90 W m−2 cooling, mostly evaporation) are the largest errors in simulations once the compensation between solar and longwave radiation is taken into account. In addition to excessive solar warming and evaporation, models simulate too little oceanic residual cooling in the southeastern tropical Pacific Ocean.

Full access
Gary A. Wick
,
J. Carter Ohlmann
,
Christopher W. Fairall
, and
Andrew T. Jessup

Abstract

The oceanic near-surface temperature profile must be accurately characterized to enable precise determination of air–sea heat exchange and satellite retrievals of sea surface temperature. An improved solar transmission parameterization is integrated into existing models for the oceanic warm layer and cool skin within the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) bulk flux model to improve the accuracy of predictions of the temperature profile and corresponding heat flux components. Application of the revised bulk flux model to data from 12 diverse cruises demonstrates that the improved parameterization results in significant changes to the predicted cool-skin effect and latent heat fluxes at low wind speeds with high solar radiation due to reduced absorption of solar radiation just below the surface. Daytime skin-layer cooling is predicted to increase by 0.03 K on average but by more than 0.25 K for winds below 1 m s−1 and surface irradiance exceeding 900 W m−2. Predicted changes to the warm-layer correction were smaller but exceeded 0.1 K below 1 m s−1. Average latent and sensible heat fluxes changed by 1 W m−2, but the latent flux decreased by 5 W m−2 near winds of 0.5 m s−1 and surface irradiance of 950 W m−2. Comparison with direct observations of skin-layer cooling demonstrated, in particular, that use of the improved solar transmission model resulted in the reduction of previous systematic overestimates of diurnal skin-layer warming. Similar results can be achieved using a simplified treatment of solar absorption with an appropriate estimate of the fraction of incident solar radiation absorbed within the skin layer.

Full access
Sophia E. Brumer
,
Christopher J. Zappa
,
Ian M. Brooks
,
Hitoshi Tamura
,
Scott M. Brown
,
Byron W. Blomquist
,
Christopher W. Fairall
, and
Alejandro Cifuentes-Lorenzen

Abstract

Concurrent wavefield and turbulent flux measurements acquired during the Southern Ocean (SO) Gas Exchange (GasEx) and the High Wind Speed Gas Exchange Study (HiWinGS) projects permit evaluation of the dependence of the whitecap coverage W on wind speed, wave age, wave steepness, mean square slope, and wind-wave and breaking Reynolds numbers. The W was determined from over 600 high-frequency visible imagery recordings of 20 min each. Wave statistics were computed from in situ and remotely sensed data as well as from a WAVEWATCH III hindcast. The first shipborne estimates of W under sustained 10-m neutral wind speeds U 10N of 25 m s−1 were obtained during HiWinGS. These measurements suggest that W levels off at high wind speed, not exceeding 10% when averaged over 20 min. Combining wind speed and wave height in the form of the wind-wave Reynolds number resulted in closely agreeing models for both datasets, individually and combined. These are also in good agreement with two previous studies. When expressing W in terms of wavefield statistics only or wave age, larger scatter is observed and/or there is little agreement between SO GasEx, HiWinGS, and previously published data. The wind speed–only parameterizations deduced from the SO GasEx and HiWinGS datasets agree closely and capture more of the observed W variability than Reynolds number parameterizations. However, these wind speed–only models do not agree as well with previous studies than the wind-wave Reynolds numbers.

Full access
Christopher S. Bretherton
,
Taneil Uttal
,
Christopher W. Fairall
,
Sandra E. Yuter
,
Robert A. Weller
,
Darrel Baumgardner
,
Kimberly Comstock
,
Robert Wood
, and
Graciela B. Raga

Overlaying the cool southeast Pacific Ocean is the most persistent subtropical stratocumulus cloud deck in the world. It produces a profound affect on tropical climate by shading the underlying ocean and radiatively cooling and stirring up turbulence in the atmosphere. In October 2001, the East Pacific Investigation of Climate undertook an exploratory cruise from the Galapagos Islands to Chile. The cruise gathered an unprecedented dataset, integrating radiosonde, surface, cloud remote sensing, aerosol, and ocean measurements. Scientific objectives included measuring the vertical structure of the ABL in this region, understanding what physical processes are determining the stratocumulus cloud albedo, and understanding the fluxes of heat and water that couple the atmosphere and ocean in this region.

An unexpectedly well-mixed stratocumulus-capped boundary layer as a result of a strong inversion was encountered throughout. A strong diurnal cycle was observed, with thicker clouds and substantial drizzle (mainly evaporating above the sea surface) during the late night and early morning. This was driven in part by local diabatic processes, and was reinforced by a surprisingly pronounced diurnal cycle of vertical motion. The vertical motion appears to be an inertia-gravity wave driven by daytime heating over South America that propagates over 1000 km offshore. Much more nocturnal drizzle and pronounced mesoscale cellularity were observed in “clean” conditions when cloud droplet concentrations and aerosol concentrations were low. Entrainment of dry, warm air is inferred to be the primary regulator of cloud thickness in this region, but drizzle also appears to have a large indirect impact by inhibiting and changing the spatial organization of turbulence.

Full access
Vidhi Bharti
,
Eric Schulz
,
Christopher W. Fairall
,
Byron W. Blomquist
,
Yi Huang
,
Alain Protat
,
Steven T. Siems
, and
Michael J. Manton

Abstract

Given the large uncertainties in surface heat fluxes over the Southern Ocean, an assessment of fluxes obtained by European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) product, the Australian Integrated Marine Observing System (IMOS) routine observations, and the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project hybrid dataset is performed. The surface fluxes are calculated using the COARE 3.5 bulk algorithm with in situ data obtained from the NOAA Physical Sciences Division flux system during the Clouds, Aerosols, Precipitation, Radiation, and Atmospheric Composition over the Southern Ocean (CAPRICORN) experiment on board the R/V Investigator during a voyage (March–April 2016) in the Australian sector of the Southern Ocean (43°–53°S). ERA-Interim and OAFlux data are further compared with the Southern Ocean Flux Station (SOFS) air–sea flux moored surface float deployed for a year (March 2015–April 2016) at ~46.7°S, 142°E. The results indicate that ERA-Interim (3 hourly at 0.25°) and OAFlux (daily at 1°) estimate sensible heat flux H s accurately to within ±5 W m−2 and latent heat flux H l to within ±10 W m−2. ERA-Interim gives a positive bias in H s at low latitudes (<47°S) and in H l at high latitudes (>47°S), and OAFlux displays consistently positive bias in H l at all latitudes. No systematic bias with respect to wind or rain conditions was observed. Although some differences in the bulk flux algorithms are noted, these biases can be largely attributed to the uncertainties in the observations used to derive the flux products.

Full access
Edgar L. Andreas
,
P. Ola G. Persson
,
Andrey A. Grachev
,
Rachel E. Jordan
,
Thomas W. Horst
,
Peter S. Guest
, and
Christopher W. Fairall

Abstract

The Surface Heat Budget of the Arctic Ocean (SHEBA) experiment produced 18 000 h of turbulence data from the atmospheric surface layer over sea ice while the ice camp drifted for a year in the Beaufort Gyre. Multiple sites instrumented during SHEBA suggest only two aerodynamic seasons over sea ice. In “winter” (October 1997 through 14 May 1998 and 15 September 1998 through the end of the SHEBA deployment in early October 1998), the ice was compact and snow covered, and the snow was dry enough to drift and blow. In “summer” (15 May through 14 September 1998 in this dataset), the snow melted, and melt ponds and leads appeared and covered as much as 40% of the surface with open water. This paper develops a bulk turbulent flux algorithm to explain the winter data. This algorithm predicts the surface fluxes of momentum, and sensible and latent heat from more readily measured or modeled quantities. A main result of the analysis is that the roughness length for wind speed z 0 does not depend on the friction velocity u * in the drifting snow regime (u * ≥ 0.30 m s−1) but, rather, is constant in the SHEBA dataset at about 2.3 × 10−4 m. Previous analyses that found z 0 to increase with u * during drifting snow may have suffered from fictitious correlation because u * also appears in z 0. The present analysis mitigates this fictitious correlation by plotting measured z 0 against the corresponding u * computed from the bulk flux algorithm. Such plots, created with data from six different SHEBA sites, show z 0 to be independent of the bulk u * for 0.15 < u * ≤ 0.65 m s−1. This study also evaluates the roughness lengths for temperature zT and humidity zQ , incorporates new profile stratification corrections for stable stratification, addresses the singularities that often occur in iterative flux algorithms in very light winds, and includes an extensive analysis of whether atmospheric stratification affects z 0, zT , and zQ .

Full access
J. E. Jack Reeves Eyre
,
Meghan F. Cronin
,
Dongxiao Zhang
,
Elizabeth J. Thompson
,
Christopher W. Fairall
, and
James B. Edson

Abstract

High-frequency wind measurements from Saildrone autonomous surface vehicles are used to calculate wind stress in the tropical east Pacific. Comparison between direct covariance (DC) and bulk wind stress estimates demonstrates very good agreement. Building on previous work that showed the bulk input data were reliable, our results lend credibility to the DC estimates. Wind flow distortion by Saildrones is comparable to or smaller than other platforms. Motion correction results in realistic wind spectra, albeit with signatures of swell-coherent wind fluctuations that may be unrealistically strong. Fractional differences between DC and bulk wind stress magnitude are largest at wind speeds below 4 m s−1. The size of this effect, however, depends on choice of stress direction assumptions. Past work has shown the importance of using current-relative (instead of Earth-relative) winds to achieve accurate wind stress magnitude. We show that it is also important for wind stress direction.

Significance Statement

We use data from Saildrone uncrewed oceanographic research vehicles to investigate the horizontal forces applied to the surface of the ocean by the action of the wind. We compare two methods to calculate the forces: one uses several simplifying assumptions, and the other makes fewer assumptions but is error prone if the data are incorrectly processed. The two methods agree well, suggesting that Saildrone vehicles are suitable for both methods and that the data processing methods work. Our results show that it is important to consider ocean currents, as well as winds, in order to achieve accurate magnitude and direction of the surface forces.

Open access
Wiebe A. Oost
,
Christopher W. Fairall
,
James B. Edson
,
Stuart D. Smith
,
Robert J. Anderson
,
John A.B. Wills
,
Kristina B. Katsaros
, and
Janice DeCosmo

Abstract

Several methods are examined for correction of turbulence and eddy fluxes in the atmospheric boundary layer, two of them based on a potential-flow approach initiated by Wyngaard. If the distorting object is cylindrical or if the distance to the sensor is much greater than the size of the body, the undisturbed wind stress can be calculated solely from measurements made by the sensor itself; no auxiliary measurements or lengthy model calculations are needed. A more general potential-flow correction has been developed in which distorting objects of complex shape are represented as a number of ellipsoidal elements.

These models are applied to data from three turbulence anemometers with differing amounts of flow distortion, operated simultaneously in the Humidity Exchange over the Sea (HEXOS) Main Experiment. The results are compared with wind-stress estimates by the inertial-dissipation technique; these are much less sensitive to local flow distortion and are consistent with the corrected eddy correlation results. From these comparisons it is concluded that the commonly used “tilt correction” is not sufficient to correct eddy wind stress for distortion by nearby objects, such as probe supports and neighboring sensors.

Neither potential-flow method is applicable to distortion by larger bodies of a scale comparable to the measuring height, such as the superstructure of the Meetpost Noordwijk (MPN) platform used in HEXOS. Flow distortion has been measured around a model of MPN in a wind tunnel study. The results were used to correct mean winds, but simulation of distortion effects on turbulence levels and wind stress turned out not to be feasible.

Full access
Joel R. Norris
,
F. Martin Ralph
,
Reuben Demirdjian
,
Forest Cannon
,
Byron Blomquist
,
Christopher W. Fairall
,
J. Ryan Spackman
,
Simone Tanelli
, and
Duane E. Waliser

Abstract

Combined airborne, shipboard, and satellite measurements provide the first observational assessment of all major terms of the vertically integrated water vapor (IWV) budget for a 150 km × 160 km region within the core of a strong atmospheric river over the northeastern Pacific Ocean centered on 1930 UTC 5 February 2015. Column-integrated moisture flux convergence is estimated from eight dropsonde profiles, and surface rain rate is estimated from tail Doppler radar reflectivity measurements. Dynamical convergence of water vapor (2.20 ± 0.12 mm h−1) nearly balances estimated precipitation (2.47 ± 0.41 mm h−1), but surface evaporation (0.0 ± 0.05 mm h−1) is negligible. Advection of drier air into the budget region (−1.50 ± 0.21 mm h−1) causes IWV tendency from the sum of all terms to be negative (−1.66 ± 0.45 mm h−1). An independent estimate of IWV tendency obtained from the difference between IWV measured by dropsonde and retrieved by satellite 3 h earlier is less negative (−0.52 ± 0.24 mm h−1), suggesting the presence of substantial temporal variability that is smoothed out when averaging over several hours. The calculation of budget terms for various combinations of dropsonde subsets indicates the presence of substantial spatial variability at ~50-km scales for precipitation, moisture flux convergence, and IWV tendency that is smoothed out when averaging over the full budget region. Across subregions, surface rain rate is linearly proportional to dynamical convergence of water vapor. These observational results improve our understanding of the thermodynamic and kinematic processes that control IWV in atmospheric rivers and the scales at which they occur.

Open access
Andrey A. Grachev
,
Christopher W. Fairall
,
Byron W. Blomquist
,
Harindra J. S. Fernando
,
Laura S. Leo
,
Sebastián F. Otárola-Bustos
,
James M. Wilczak
, and
Katherine L. McCaffrey

Abstract

Measurements made in the Columbia River basin (Oregon) in an area of irregular terrain during the second Wind Forecast Improvement Project (WFIP2) field campaign are used to develop an optimized hybrid bulk algorithm to predict the surface turbulent fluxes from readily measured or modeled quantities over dry and wet bare or lightly vegetated soil surfaces. The hybrid (synthetic) algorithm combines (i) an aerodynamic method for turbulent flow, which is based on the transfer coefficients (drag coefficient and Stanton number), roughness lengths, and Monin–Obukhov similarity; and (ii) a modified Priestley–Taylor (P-T) algorithm with physically based ecophysiological constraints, which is essentially based on the surface energy budget (SEB) equation. Soil heat flux in the latter case was estimated from measurements of soil temperature and soil moisture. In the framework of the hybrid algorithm, bulk estimates of the momentum flux and the sensible heat flux are derived from a traditional aerodynamic approach, whereas the latent heat flux (or moisture flux) is evaluated from a modified P-T model. Direct measurements of the surface fluxes (turbulent and radiative) and other ancillary atmospheric/soil parameters made during WFIP2 for different soil conditions (dry and wet) are used to optimize and tune the hybrid bulk algorithm. The bulk flux estimates are validated against the measured eddy-covariance fluxes. We also discuss the SEB closure over dry and wet surfaces at various time scales based on the modeled and measured fluxes. Although this bulk flux algorithm is optimized for the data collected during the WFIP2, a hybrid approach can be used for similar flux-tower sites and field campaigns.

Full access