Search Results

You are looking at 11 - 12 of 12 items for :

  • Author or Editor: David Meko x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
David M. Meko
,
Franco Biondi
,
Alan H. Taylor
,
Irina P. Panyushkina
,
Richard D. Thaxton
,
Alexander A. Prusevich
,
Alexander I. Shiklomanov
,
Richard B. Lammers
, and
Stanley Glidden

Abstract

Regional warming and associated changes in hydrologic systems pose challenges to water supply management in river basins of the western United States and call for improved understanding of the spatial and temporal variability of runoff. We apply a network of total width, subannual width, and delta blue intensity tree-ring chronologies in combination with a monthly water balance model to identify droughts and their associated precipitation P and temperature T footprints in the Truckee–Carson River basin (TCRB). Stepwise regression gave reasonably accurate reconstructions, from 1688 to 1999, of seasonal P and T (e.g., R 2 = 0.50 for May–September T). These were disaggregated to monthly values, which were then routed through a water balance model to generate “indirectly” reconstructed runoff. Reconstructed and observed annual runoff correlate highly (r = 0.80) from 1906 to 1999. The extended runoff record shows that twentieth-century droughts are unmatched in severity in a 300-yr context. Our water balance modeling reconstruction advances the conventional regression-based dendrochronological methods as it allows for multiple hydrologic components (evapotranspiration, snowmelt, etc.) to be evaluated. We found that imposed warming (3° and 6°C) generally exacerbated the runoff deficits in past droughts but that impact could be lessened and sometimes even reversed in some years by compensating factors, including changes in snow regime. Our results underscore the value of combining multiproxy tree-ring data with water balance modeling to place past hydrologic droughts in the context of climate change.

Significance Statement

We show how water balance modeling in combination with tree-ring data helps place modern droughts in the context of the past few centuries and a warming climate. Seasonal precipitation and temperature were reconstructed from multiproxy tree-ring data for a mountainous location near Lake Tahoe, and these reconstructions were routed through a water balance model to get a record of monthly runoff, snowmelt, and other water balance variables from 1688 to 1999. The resulting extended annual runoff record highlights the unmatched severity of twentieth-century droughts. A warming of 3°C imposed on reconstructed temperature generally exacerbates the runoff anomalies in past droughts, but this effect is sometimes offset by warming-related changes in the snow regime.

Open access
David W. Stahle
,
Edward R. Cook
,
Dorian J. Burnette
,
Max C. A. Torbenson
,
Ian M. Howard
,
Daniel Griffin
,
Jose Villanueva Diaz
,
Benjamin I. Cook
,
A. Park Williams
,
Emma Watson
,
David J. Sauchyn
,
Neil Pederson
,
Connie A. Woodhouse
,
Gregory T. Pederson
,
David Meko
,
Bethany Coulthard
, and
Christopher J. Crawford

Abstract

Cool- and warm-season precipitation totals have been reconstructed on a gridded basis for North America using 439 tree-ring chronologies correlated with December–April totals and 547 different chronologies correlated with May–July totals. These discrete seasonal chronologies are not significantly correlated with the alternate season; the December–April reconstructions are skillful over most of the southern and western United States and north-central Mexico, and the May–July estimates have skill over most of the United States, southwestern Canada, and northeastern Mexico. Both the strong continent-wide El Niño–Southern Oscillation (ENSO) signal embedded in the cool-season reconstructions and the Arctic Oscillation signal registered by the warm-season estimates faithfully reproduce the sign, intensity, and spatial patterns of these ocean–atmospheric influences on North American precipitation as recorded with instrumental data. The reconstructions are included in the North American Seasonal Precipitation Atlas (NASPA) and provide insight into decadal droughts and pluvials. They indicate that the sixteenth-century megadrought, the most severe and sustained North American drought of the past 500 years, was the combined result of three distinct seasonal droughts, each bearing unique spatial patterns potentially associated with seasonal forcing from ENSO, the Arctic Oscillation, and the Atlantic multidecadal oscillation. Significant 200–500-yr-long trends toward increased precipitation have been detected in the cool- and warm-season reconstructions for eastern North America. These seasonal precipitation changes appear to be part of the positive moisture trend measured in other paleoclimate proxies for the eastern area that began as a result of natural forcing before the industrial revolution and may have recently been enhanced by anthropogenic climate change.

Free access