Search Results

You are looking at 11 - 12 of 12 items for :

  • Author or Editor: H. Russchenberg x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
H. Leijnse
,
R. Uijlenhoet
,
C. Z. van de Beek
,
A. Overeem
,
T. Otto
,
C. M. H. Unal
,
Y. Dufournet
,
H. W. J. Russchenberg
,
J. Figueras i Ventura
,
H. Klein Baltink
, and
I. Holleman

Abstract

The Cabauw Experimental Site for Atmospheric Research (CESAR) observatory hosts a unique collection of instruments related to precipitation measurement. The data collected by these instruments are stored in a database that is freely accessible through a Web interface. The instruments present at the CESAR site include three disdrometers (two on the ground and one at 200 m above ground level), a dense network of rain gauges, three profiling radars (1.3, 3.3, and 35 GHz), and an X-band Doppler polarimetric scanning radar. In addition to these instruments, operational weather radar data from the nearby (∼25 km) De Bilt C-band Doppler radar are also available. The richness of the datasets available is illustrated for a rainfall event, where the synergy of the different instruments provides insight into precipitation at multiple spatial and temporal scales. These datasets, which are freely available to the scientific community, can contribute greatly to our understanding of precipitation-related atmospheric and hydrologic processes.

Full access

Cloudnet

Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations

A. J. Illingworth
,
R. J. Hogan
,
E.J. O'Connor
,
D. Bouniol
,
M. E. Brooks
,
J. Delanoé
,
D. P. Donovan
,
J. D. Eastment
,
N. Gaussiat
,
J. W. F. Goddard
,
M. Haeffelin
,
H. Klein Baltink
,
O. A. Krasnov
,
J. Pelon
,
J.-M. Piriou
,
A. Protat
,
H. W. J. Russchenberg
,
A. Seifert
,
A. M. Tompkins
,
G.-J. van Zadelhoff
,
F. Vinit
,
U. Willén
,
D. R. Wilson
, and
C. L. Wrench

The Cloudnet project aims to provide a systematic evaluation of clouds in forecast and climate models by comparing the model output with continuous ground-based observations of the vertical profiles of cloud properties. In the models, the properties of clouds are simplified and expressed in terms of the fraction of the model grid box, which is filled with cloud, together with the liquid and ice water content of the clouds. These models must get the clouds right if they are to correctly represent both their radiative properties and their key role in the production of precipitation, but there are few observations of the vertical profiles of the cloud properties that show whether or not they are successful. Cloud profiles derived from cloud radars, ceilometers, and dual-frequency microwave radiometers operated at three sites in France, Netherlands, and the United Kingdom for several years have been compared with the clouds in seven European models. The advantage of this continuous appraisal is that the feedback on how new versions of models are performing is provided in quasi-real time, as opposed to the much longer time scale needed for in-depth analysis of complex field studies. Here, two occasions are identified when the introduction of new versions of the ECMWF and Météo-France models leads to an immediate improvement in the representation of the clouds and also provides statistics on the performance of the seven models. The Cloudnet analysis scheme is currently being expanded to include sites outside Europe and further operational forecasting and climate models.

Full access