Search Results
You are looking at 11 - 20 of 41 items for
- Author or Editor: Isaac Ginis x
- Refine by Access: Content accessible to me x
Abstract
In this paper, the wind–wave–current interaction mechanisms in tropical cyclones and their effect on the surface wave and ocean responses are investigated through a set of numerical experiments. The key element of the authors’ modeling approach is the air–sea interface model, which consists of a wave boundary layer model and an air–sea momentum flux budget model. The results show that the time and spatial variations in the surface wave field, as well as the wave–current interaction, significantly reduce momentum flux into the currents in the right rear quadrant of the hurricane. The reduction of the momentum flux into the ocean consequently reduces the magnitude of the subsurface current and sea surface temperature cooling to the right of the hurricane track and the rate of upwelling/downwelling in the thermocline. During wind–wave–current interaction, the momentum flux into the ocean is mainly affected by reducing the wind speed relative to currents, whereas the wave field is mostly affected by refraction due to the spatially varying currents. In the area where the current is strongly and roughly aligned with wave propagation direction, the wave spectrum of longer waves is reduced, the peak frequency is shifted to a higher frequency, and the angular distribution of the wave energy is widened.
Abstract
In this paper, the wind–wave–current interaction mechanisms in tropical cyclones and their effect on the surface wave and ocean responses are investigated through a set of numerical experiments. The key element of the authors’ modeling approach is the air–sea interface model, which consists of a wave boundary layer model and an air–sea momentum flux budget model. The results show that the time and spatial variations in the surface wave field, as well as the wave–current interaction, significantly reduce momentum flux into the currents in the right rear quadrant of the hurricane. The reduction of the momentum flux into the ocean consequently reduces the magnitude of the subsurface current and sea surface temperature cooling to the right of the hurricane track and the rate of upwelling/downwelling in the thermocline. During wind–wave–current interaction, the momentum flux into the ocean is mainly affected by reducing the wind speed relative to currents, whereas the wave field is mostly affected by refraction due to the spatially varying currents. In the area where the current is strongly and roughly aligned with wave propagation direction, the wave spectrum of longer waves is reduced, the peak frequency is shifted to a higher frequency, and the angular distribution of the wave energy is widened.
Abstract
Effects of new drag coefficient (Cd ) parameterizations on WAVEWATCH III (WW3) model surface wave simulations are investigated. The new parameterizations are based on a coupled wind–wave model (CWW) and a wave tank experiment, and yields reduced Cd at high wind speeds. Numerical experiments for uniform winds and Hurricane Katrina (2005) indicate that the original Cd parameterization used in WW3 overestimates drag at high wind speeds compared to recent observational, theoretical, and numerical modeling results. Comparisons with buoy measurements during Hurricane Katrina demonstrate that WW3 simulations with the new Cd parameterizations yield more accurate significant wave heights compared to simulations with the original Cd parameterization, provided that accurate high-resolution wind forcing fields are used.
Abstract
Effects of new drag coefficient (Cd ) parameterizations on WAVEWATCH III (WW3) model surface wave simulations are investigated. The new parameterizations are based on a coupled wind–wave model (CWW) and a wave tank experiment, and yields reduced Cd at high wind speeds. Numerical experiments for uniform winds and Hurricane Katrina (2005) indicate that the original Cd parameterization used in WW3 overestimates drag at high wind speeds compared to recent observational, theoretical, and numerical modeling results. Comparisons with buoy measurements during Hurricane Katrina demonstrate that WW3 simulations with the new Cd parameterizations yield more accurate significant wave heights compared to simulations with the original Cd parameterization, provided that accurate high-resolution wind forcing fields are used.
Abstract
Little is known about the effects of surface water over land on the decay of landfalling hurricanes. This study, using the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model, examines the surface temperature changes due to hurricane–land surface water interactions, and their effects on the surface heat fluxes, hurricane structure, and intensity. Different water depths and surface conditions are incorporated for a variety of experiments starting with a hurricane bogus embedded in a uniform easterly mean flow of 5 m s−1.
A salient feature of hurricane–land surface water interaction is the local surface cooling near the hurricane core with the largest cooling behind and on the right side of the hurricane center. Unlike the surface cooling due to hurricane–ocean interaction, the largest cooling in hurricane–land surface water interaction can be much closer to the hurricane core. Without solar radiation during night, the surface evaporation dominates the local surface cooling. This causes a surface temperature contrast between the core area and its environment. During the day, the surface temperature contrast is enhanced due to additional influence from the reduced solar radiation under the core. Related to the local surface cooling, there is a significant reduction of surface evaporation with a near cutoff behind the hurricane center. A layer of half-meter water can noticeably reduce landfall decay although the local surface temperature around the hurricane core region is more than 4°C lower than in its environment. Further experiments indicate that an increase of roughness reduces the surface winds but barely changes the surface temperature and evaporation patterns and their magnitudes since the increase of roughness also increases the efficiency of surface evaporation.
Abstract
Little is known about the effects of surface water over land on the decay of landfalling hurricanes. This study, using the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model, examines the surface temperature changes due to hurricane–land surface water interactions, and their effects on the surface heat fluxes, hurricane structure, and intensity. Different water depths and surface conditions are incorporated for a variety of experiments starting with a hurricane bogus embedded in a uniform easterly mean flow of 5 m s−1.
A salient feature of hurricane–land surface water interaction is the local surface cooling near the hurricane core with the largest cooling behind and on the right side of the hurricane center. Unlike the surface cooling due to hurricane–ocean interaction, the largest cooling in hurricane–land surface water interaction can be much closer to the hurricane core. Without solar radiation during night, the surface evaporation dominates the local surface cooling. This causes a surface temperature contrast between the core area and its environment. During the day, the surface temperature contrast is enhanced due to additional influence from the reduced solar radiation under the core. Related to the local surface cooling, there is a significant reduction of surface evaporation with a near cutoff behind the hurricane center. A layer of half-meter water can noticeably reduce landfall decay although the local surface temperature around the hurricane core region is more than 4°C lower than in its environment. Further experiments indicate that an increase of roughness reduces the surface winds but barely changes the surface temperature and evaporation patterns and their magnitudes since the increase of roughness also increases the efficiency of surface evaporation.
Abstract
Present parameterizations of air–sea momentum flux at high wind speed, including hurricane wind forcing, are based on extrapolation from field measurements in much weaker wind regimes. They predict monotonic increase of drag coefficient (C d ) with wind speed. Under hurricane wind forcing, the present numerical experiments using a coupled ocean wave and wave boundary layer model show that C d at extreme wind speeds strongly depends on the wave field. Higher, longer, and more developed waves in the right-front quadrant of the storm produce higher sea drag; lower, shorter, and younger waves in the rear-left quadrant produce lower sea drag. Hurricane intensity, translation speed, as well as the asymmetry of wind forcing are major factors that determine the spatial distribution of C d . At high winds above 30 m s−1, the present model predicts a significant reduction of C d and an overall tendency to level off and even decrease with wind speed. This tendency is consistent with recent observational, experimental, and theoretical results at very high wind speeds.
Abstract
Present parameterizations of air–sea momentum flux at high wind speed, including hurricane wind forcing, are based on extrapolation from field measurements in much weaker wind regimes. They predict monotonic increase of drag coefficient (C d ) with wind speed. Under hurricane wind forcing, the present numerical experiments using a coupled ocean wave and wave boundary layer model show that C d at extreme wind speeds strongly depends on the wave field. Higher, longer, and more developed waves in the right-front quadrant of the storm produce higher sea drag; lower, shorter, and younger waves in the rear-left quadrant produce lower sea drag. Hurricane intensity, translation speed, as well as the asymmetry of wind forcing are major factors that determine the spatial distribution of C d . At high winds above 30 m s−1, the present model predicts a significant reduction of C d and an overall tendency to level off and even decrease with wind speed. This tendency is consistent with recent observational, experimental, and theoretical results at very high wind speeds.
Abstract
A model of the atmospheric boundary layer (BL) is presented that explicitly calculates a two-way interaction of the background flow and convective motions. The model is utilized for investigation of the formation of large eddies (roll vortices) and their effects on the structure of the marine boundary layer under conditions resembling those of tropical cyclones. It is shown that two main factors controlling the formation of large eddies are the magnitude of the background wind speed and air humidity, determining the cloud formation and latent heat release. When the wind speed is high enough, a strong vertical wind shear develops in the lower part of the BL, which triggers turbulent mixing and the formation of a mixed layer. As a result, the vertical profiles of velocity, potential temperature, and mixing ratio in the background flow are modified to allow for the development of large eddies via dynamic instability. Latent heat release in clouds was found to be the major energy source of large eddies. The cloud formation depends on the magnitude of air humidity.
The most important manifestation of the effects of large eddies is a significant increase of the near-surface wind speed and evaporation from the sea surface. For strong wind conditions, the increase of the near-surface speed can exceed 10 m s−1 and evaporation from the sea surface can double. These results demonstrate an important role large eddies play in the formation of BL structure in high wind speeds. Inclusion of these effects in the BL parameterizations of tropical cyclone models may potentially lead to substantial improvements in the prediction of storm intensity.
Abstract
A model of the atmospheric boundary layer (BL) is presented that explicitly calculates a two-way interaction of the background flow and convective motions. The model is utilized for investigation of the formation of large eddies (roll vortices) and their effects on the structure of the marine boundary layer under conditions resembling those of tropical cyclones. It is shown that two main factors controlling the formation of large eddies are the magnitude of the background wind speed and air humidity, determining the cloud formation and latent heat release. When the wind speed is high enough, a strong vertical wind shear develops in the lower part of the BL, which triggers turbulent mixing and the formation of a mixed layer. As a result, the vertical profiles of velocity, potential temperature, and mixing ratio in the background flow are modified to allow for the development of large eddies via dynamic instability. Latent heat release in clouds was found to be the major energy source of large eddies. The cloud formation depends on the magnitude of air humidity.
The most important manifestation of the effects of large eddies is a significant increase of the near-surface wind speed and evaporation from the sea surface. For strong wind conditions, the increase of the near-surface speed can exceed 10 m s−1 and evaporation from the sea surface can double. These results demonstrate an important role large eddies play in the formation of BL structure in high wind speeds. Inclusion of these effects in the BL parameterizations of tropical cyclone models may potentially lead to substantial improvements in the prediction of storm intensity.
Abstract
In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to ±4°C and sea surface temperatures ranging from 26° to 31°C given the same relative humidity profile.
The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST) increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of atmospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic in the parameter space. This implies that hurricane intensity increase due to a possible global warming associated with increased CO2 is considerably smaller than that expected from warming of the oceanic waters alone. The results also indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface evaporation and the large-scale environmental convective available potential energy. The model-attained hurricane intensity is highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane–ocean experiments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less increase of hurricane intensity related to a possible global warming due to increased CO2.
Abstract
In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to ±4°C and sea surface temperatures ranging from 26° to 31°C given the same relative humidity profile.
The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST) increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of atmospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic in the parameter space. This implies that hurricane intensity increase due to a possible global warming associated with increased CO2 is considerably smaller than that expected from warming of the oceanic waters alone. The results also indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface evaporation and the large-scale environmental convective available potential energy. The model-attained hurricane intensity is highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane–ocean experiments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less increase of hurricane intensity related to a possible global warming due to increased CO2.
Abstract
The interaction of binary tropical cyclones (TC) is investigated using a coupled TC-ocean movable nested-grid model. The model consists of an eight-layer atmospheric model in the sigma coordinate system and a three-layer primitive equation ocean model. There are five meshes in the TC model. The outermost domain (3840 km × 3840 km) is motionless. For the description of each TC in a TC pair, two telescopically nested meshes of finer resolution are used. The pair of the middle (1600 km × 1600 km) and innermost (800 km × 800 km) meshes move with the center of a corresponding TC. The space increments of the outermost domain and the middle and finest meshes are 160, 80, and 40 km. The oceanic domain contains 107 × 107 grid points, with the spatial increment of 40 km. In all numerical experiments a pair of equal strength axisymmetric vortices was located at different separation distances.
Experiments show that the rate of development of interacting TCs is different, mainly due to the difference in the velocities of TC movement. There is a “critical” separation distance between the centers of TCs, so that in case the separation distance is less than this critical value, attraction and merger of the TCs were observed. The critical separation distance depends on the structure of the vorticity field created by the binary TCs. Because of the changes in the structure of a TC during its life cycle the critical separation distance should also change. Two mechanisms related to the mutual vorticity advection and to the activity of irrotational velocity components seem to contribute to the attraction and repulsion of binary TCs.
The impact of the TC-ocean interaction on the evolution and trajectory of binary TCs is much stronger than in the case of a single TC. A decrease in TC strength is related not only to a TC response to seawater cooling caused by the TC itself but also to the crossing of the cold water wakes created both by the other TC and by the TC itself. A decrease in strength loads to a decrease in the mutual rotation velocity and, consequently, to a marked change in the trajectories of each of the interacting TCs. Changes in the structure of binary TCs caused by the TC-ocean interaction lead to an increase of the critical separation distance. Binary TCs cause seawater cooling over vast ocean areas and lead to the formation of a spotted sea surface temperature pattern.
Abstract
The interaction of binary tropical cyclones (TC) is investigated using a coupled TC-ocean movable nested-grid model. The model consists of an eight-layer atmospheric model in the sigma coordinate system and a three-layer primitive equation ocean model. There are five meshes in the TC model. The outermost domain (3840 km × 3840 km) is motionless. For the description of each TC in a TC pair, two telescopically nested meshes of finer resolution are used. The pair of the middle (1600 km × 1600 km) and innermost (800 km × 800 km) meshes move with the center of a corresponding TC. The space increments of the outermost domain and the middle and finest meshes are 160, 80, and 40 km. The oceanic domain contains 107 × 107 grid points, with the spatial increment of 40 km. In all numerical experiments a pair of equal strength axisymmetric vortices was located at different separation distances.
Experiments show that the rate of development of interacting TCs is different, mainly due to the difference in the velocities of TC movement. There is a “critical” separation distance between the centers of TCs, so that in case the separation distance is less than this critical value, attraction and merger of the TCs were observed. The critical separation distance depends on the structure of the vorticity field created by the binary TCs. Because of the changes in the structure of a TC during its life cycle the critical separation distance should also change. Two mechanisms related to the mutual vorticity advection and to the activity of irrotational velocity components seem to contribute to the attraction and repulsion of binary TCs.
The impact of the TC-ocean interaction on the evolution and trajectory of binary TCs is much stronger than in the case of a single TC. A decrease in TC strength is related not only to a TC response to seawater cooling caused by the TC itself but also to the crossing of the cold water wakes created both by the other TC and by the TC itself. A decrease in strength loads to a decrease in the mutual rotation velocity and, consequently, to a marked change in the trajectories of each of the interacting TCs. Changes in the structure of binary TCs caused by the TC-ocean interaction lead to an increase of the critical separation distance. Binary TCs cause seawater cooling over vast ocean areas and lead to the formation of a spotted sea surface temperature pattern.
Abstract
A new bulk parameterization of the air–sea momentum flux at high wind speeds is proposed based on coupled wave–wind model simulations for 10 tropical cyclones that occurred in the Atlantic Ocean during 1998–2003. The new parameterization describes how the roughness length increases linearly with wind speed and the neutral drag coefficient tends to level off at high wind speeds. The proposed parameterization is then tested on real hurricanes using the operational Geophysical Fluid Dynamics Laboratory (GFDL) coupled hurricane–ocean prediction model. The impact of the new parameterization on the hurricane prediction is mainly found in increased maximum surface wind speeds, while it does not appreciably affect the hurricane central pressure prediction. This helps to improve the GFDL model–predicted wind–pressure relationship in strong hurricanes. Attempts are made to provide physical explanations as to why the reduced drag coefficient affects surface wind speeds but not the central pressure in hurricanes.
Abstract
A new bulk parameterization of the air–sea momentum flux at high wind speeds is proposed based on coupled wave–wind model simulations for 10 tropical cyclones that occurred in the Atlantic Ocean during 1998–2003. The new parameterization describes how the roughness length increases linearly with wind speed and the neutral drag coefficient tends to level off at high wind speeds. The proposed parameterization is then tested on real hurricanes using the operational Geophysical Fluid Dynamics Laboratory (GFDL) coupled hurricane–ocean prediction model. The impact of the new parameterization on the hurricane prediction is mainly found in increased maximum surface wind speeds, while it does not appreciably affect the hurricane central pressure prediction. This helps to improve the GFDL model–predicted wind–pressure relationship in strong hurricanes. Attempts are made to provide physical explanations as to why the reduced drag coefficient affects surface wind speeds but not the central pressure in hurricanes.
Abstract
In this study, the authors numerically investigate the response of an axisymmetric tropical cyclone (TC) vortex to the vertical fluxes of momentum, heat, and moisture induced by roll vortices (rolls) in the boundary layer. To represent the vertical fluxes induced by rolls, a two-dimensional high-resolution Single-Grid Roll-Resolving Model (SRM) is embedded at multiple horizontal grid points in the mesoscale COAMPS for Tropical Cyclones (COAMPS-TC) model domain. Idealized experiments are conducted with the SRM embedded within 3 times the radius of maximum wind of an axisymmetric TC. The results indicate that the rolls induce changes in the boundary layer wind distribution and cause a moderate (approximately 15%) increase in the TC intensification rate by increasing the boundary layer convergence in the eyewall region and induce more active eyewall convection. The numerical experiments also suggest that the roll-induced tangential momentum flux is most important in contributing to the TC intensification process, and the rolls generated at different radii (within the range considered in this study) all have positive contributions. The results are not qualitatively impacted by the initial TC vortex or the setup of the vertical diffusivity in COAMPS-TC.
Abstract
In this study, the authors numerically investigate the response of an axisymmetric tropical cyclone (TC) vortex to the vertical fluxes of momentum, heat, and moisture induced by roll vortices (rolls) in the boundary layer. To represent the vertical fluxes induced by rolls, a two-dimensional high-resolution Single-Grid Roll-Resolving Model (SRM) is embedded at multiple horizontal grid points in the mesoscale COAMPS for Tropical Cyclones (COAMPS-TC) model domain. Idealized experiments are conducted with the SRM embedded within 3 times the radius of maximum wind of an axisymmetric TC. The results indicate that the rolls induce changes in the boundary layer wind distribution and cause a moderate (approximately 15%) increase in the TC intensification rate by increasing the boundary layer convergence in the eyewall region and induce more active eyewall convection. The numerical experiments also suggest that the roll-induced tangential momentum flux is most important in contributing to the TC intensification process, and the rolls generated at different radii (within the range considered in this study) all have positive contributions. The results are not qualitatively impacted by the initial TC vortex or the setup of the vertical diffusivity in COAMPS-TC.
Abstract
This study explores how a carbon dioxide (CO2) warming–induced enhancement of hurricane intensity could be altered by the inclusion of hurricane–ocean coupling. Simulations are performed using a coupled version of the Geophysical Fluid Dynamics Laboratory hurricane prediction system in an idealized setting with highly simplified background flow fields. The large-scale atmospheric boundary conditions for these high-resolution experiments (atmospheric temperature and moisture profiles and SSTs) are derived from control and high-CO2 climatologies obtained from a low-resolution (R30) global coupled ocean–atmosphere climate model. The high-CO2 conditions are obtained from years 71–120 of a transient +1% yr−1 CO2-increase experiment with the global model. The CO2-induced SST changes from the global climate model range from +2.2° to +2.7°C in the six tropical storm basins studied. In the storm simulations, ocean coupling significantly reduces the intensity of simulated tropical cyclones, in accord with previous studies. However, the net impact of ocean coupling on the simulated CO2 warming–induced intensification of tropical cyclones is relatively minor. For both coupled and uncoupled simulations, the percentage increase in maximum surface wind speeds averages about 5%–6% over the six basins and varies from about 3% to 10% across the different basins. Both coupled and uncoupled simulations also show strong increases of near-storm precipitation under high-CO2 climate conditions, relative to control (present day) conditions.
Abstract
This study explores how a carbon dioxide (CO2) warming–induced enhancement of hurricane intensity could be altered by the inclusion of hurricane–ocean coupling. Simulations are performed using a coupled version of the Geophysical Fluid Dynamics Laboratory hurricane prediction system in an idealized setting with highly simplified background flow fields. The large-scale atmospheric boundary conditions for these high-resolution experiments (atmospheric temperature and moisture profiles and SSTs) are derived from control and high-CO2 climatologies obtained from a low-resolution (R30) global coupled ocean–atmosphere climate model. The high-CO2 conditions are obtained from years 71–120 of a transient +1% yr−1 CO2-increase experiment with the global model. The CO2-induced SST changes from the global climate model range from +2.2° to +2.7°C in the six tropical storm basins studied. In the storm simulations, ocean coupling significantly reduces the intensity of simulated tropical cyclones, in accord with previous studies. However, the net impact of ocean coupling on the simulated CO2 warming–induced intensification of tropical cyclones is relatively minor. For both coupled and uncoupled simulations, the percentage increase in maximum surface wind speeds averages about 5%–6% over the six basins and varies from about 3% to 10% across the different basins. Both coupled and uncoupled simulations also show strong increases of near-storm precipitation under high-CO2 climate conditions, relative to control (present day) conditions.