Search Results

You are looking at 11 - 17 of 17 items for :

  • Author or Editor: Jean-Pierre Chaboureau x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Peter Bechtold
,
Noureddine Semane
,
Philippe Lopez
,
Jean-Pierre Chaboureau
,
Anton Beljaars
, and
Niels Bormann

Abstract

A new diagnostic convective closure, which is dependent on convective available potential energy (CAPE), is derived under the quasi-equilibrium assumption for the free troposphere subject to boundary layer forcing. The closure involves a convective adjustment time scale for the free troposphere and a coupling coefficient between the free troposphere and the boundary layer based on different time scales over land and ocean. Earlier studies with the ECMWF Integrated Forecasting System (IFS) have already demonstrated the model’s ability to realistically represent tropical convectively coupled waves and synoptic variability with use of the “standard” CAPE closure, given realistic entrainment rates.

A comparison of low-resolution seasonal integrations and high-resolution short-range forecasts against complementary satellite and radar data shows that with the extended CAPE closure it is also possible, independent of model resolution and time step, to realistically represent nonequilibrium convection such as the diurnal cycle of convection and the convection tied to advective boundary layers, although representing the late night convection over land remains a challenge. A more in-depth regional analysis of the diurnal cycle and the closure is provided for the continental United States and particularly Africa, including comparison with data from satellites and a cloud-resolving model (CRM). Consequences for global numerical weather prediction (NWP) are not only a better phase representation of convection, but also better forecasts of its spatial distribution and local intensity.

Full access
Thibaut Dauhut
,
Jean-Pierre Chaboureau
,
Peter H. Haynes
, and
Todd P. Lane

Abstract

Overshoots are convective air parcels that rise beyond their level of neutral buoyancy. A giga-large-eddy simulation (100-m cubic resolution) of “Hector the Convector,” a deep convective system that regularly forms in northern Australia, is analyzed to identify overshoots and quantify the effect of hydration of the stratosphere. In the simulation, 1507 individual overshoots were identified, and 46 of them were tracked over more than 10 min. Hydration of the stratosphere occurs through a sequence of mechanisms: overshoot penetration into the stratosphere, followed by entrainment of stratospheric air and then by efficient turbulent mixing between the air in the overshoot and the entrained warmer air, leaving the subsequent mixed air at about the maximum overshooting altitude. The time scale of these mechanisms is about 1 min. Two categories of overshoots are distinguished: those that significantly hydrate the stratosphere and those that have little direct hydration effect. The former reach higher altitudes and hence entrain and mix with air that has higher potential temperatures. The resulting mixed air has higher temperatures and higher saturation mixing ratios. Therefore, a greater amount of the hydrometeors carried by the original overshoot sublimates to form a persistent vapor-enriched layer. This makes the maximum overshooting altitude the key prognostic for the parameterization of deep convection to represent the correct overshoot transport. One common convection parameterization is tested, and the results suggest that the overshoot downward acceleration due to negative buoyancy is too large relative to that predicted by the numerical simulations and needs to be reduced.

Full access
Florian P. Pantillon
,
Jean-Pierre Chaboureau
,
Patrick J. Mascart
, and
Christine Lac

Abstract

The extratropical transition (ET) of a tropical cyclone is known as a source of forecast uncertainty that can propagate far downstream. The present study focuses on the predictability of a Mediterranean tropical-like storm (Medicane) on 26 September 2006 downstream of the ET of Hurricane Helene from 22 to 25 September. While the development of the Medicane was missed in the deterministic forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) initialized before and during ET, it was contained in the ECMWF ensemble forecasts in more than 10% of the 50 members up to 108-h lead time. The 200 ensemble members initialized at 0000 UTC from 20 to 23 September were clustered into two nearly equiprobable scenarios after the synoptic situation over the Mediterranean. In the first and verifying scenario, Helene was steered northeastward by an upstream trough during ET and contributed to the building of a downstream ridge. A trough elongated farther downstream toward Italy and enabled the development of the Medicane in 9 of 102 members. In the second and nonverifying scenario, Helene turned southeastward during ET and the downstream ridge building was reduced. A large-scale low over the British Isles dominated the circulation in Europe and only 1 of 98 members forecasted the Medicane. The two scenarios resulted from a different phasing between Helene and the upstream trough. Sensitivity experiments performed with the Méso-NH model further revealed that initial perturbations targeted on Helene and the upstream trough were sufficient in forecasting the warm-core Medicane at 84- and 108-h lead time.

Full access
Jean-Pierre Chaboureau
,
Nathalie Söhne
,
Jean-Pierre Pinty
,
Ingo Meirold-Mautner
,
Eric Defer
,
Catherine Prigent
,
Juan R. Pardo
,
Mario Mech
, and
Susanne Crewell

Abstract

The simulations of five midlatitude precipitating events by the nonhydrostatic mesoscale model Méso-NH are analyzed. These cases cover contrasted precipitation situations from 30° to 60°N, which are typical of midlatitudes. They include a frontal case with light precipitation over the Rhine River area (10 February 2000), a long-lasting precipitation event at Hoek van Holland, Netherlands (19 September 2001), a moderate rain case over the Elbe (12 August 2002), an intense rain case over Algiers (10 November 2001), and the “millennium storm” in the United Kingdom (30 October 2000). The physically consistent hydrometeor and thermodynamic outputs are used to generate a database for cloud and precipitation retrievals. The hydrometeor vertical profiles that were generated vary mostly with the 0°C isotherm, located between 1 and 3 km in height depending on the case. The characteristics of this midlatitude database are complementary to the GPROF database, which mostly concentrates on tropical situations. The realism of the simulations is evaluated against satellite observations by comparing synthetic brightness temperatures (BTs) with Advanced Microwave Sounding Unit (AMSU), Special Sensor Microwave Imager (SSM/I), and Meteosat observations. The good reproduction of the BT distributions by the model is exploited by calculating categorical scores for verification purposes. The comparison with 3-hourly Meteosat observations demonstrates the ability of the model to forecast the time evolution of the cloud cover, the latter being better predicted for the stratiform cases than for others. The comparison with AMSU-B measurements shows the skill of the model to predict rainfall at the correct location.

Full access
Ingo Meirold-Mautner
,
Catherine Prigent
,
Eric Defer
,
Juan R. Pardo
,
Jean-Pierre Chaboureau
,
Jean-Pierre Pinty
,
Mario Mech
, and
Susanne Crewell

Abstract

Real midlatitude meteorological cases are simulated over western Europe with the cloud mesoscale model Méso-NH, and the outputs are used to calculate brightness temperatures at microwave frequencies with the Atmospheric Transmission at Microwave (ATM) radiative transfer model. Satellite-observed brightness temperatures (TBs) from the Advanced Microwave Scanning Unit B (AMSU-B) and the Special Sensor Microwave Imager (SSM/I) are compared to the simulated ones. In this paper, one specific situation is examined in detail. The infrared responses have also been calculated and compared to the Meteosat coincident observations. Overall agreement is obtained between the simulated and the observed brightness temperatures in the microwave and in the infrared. The large-scale dynamical structure of the cloud system is well captured by Méso-NH. However, in regions with large quantities of frozen hydrometeors, the comparison shows that the simulated microwave TBs are higher than the measured ones in the window channels at high frequencies, indicating that the calculation does not predict enough scattering. The factors responsible for the scattering (frozen particle distribution, calculation of particle dielectric properties, and nonsphericity of the particles) are analyzed. To assess the quality of the cloud and precipitation simulations by Méso-NH, the microphysical fields predicted by the German Lokal-Modell are also considered. Results show that in these midlatitude situations, the treatment of the snow category has a high impact on the simulated brightness temperatures. The snow scattering parameters are tuned to match the discrete dipole approximation calculations and to obtain a good agreement between simulations and observations even in the areas with significant frozen particles. Analysis of the other meteorological simulations confirms these results. Comparing simulations and observations in the microwave provides a powerful evaluation of resolved clouds in mesoscale models, especially the precipitating ice phase.

Full access
Paola Formenti
,
Barbara D’Anna
,
Cyrille Flamant
,
Marc Mallet
,
Stuart John Piketh
,
Kerstin Schepanski
,
Fabien Waquet
,
Frédérique Auriol
,
Gerard Brogniez
,
Frédéric Burnet
,
Jean-Pierre Chaboureau
,
Aurélien Chauvigné
,
Patrick Chazette
,
Cyrielle Denjean
,
Karine Desboeufs
,
Jean-François Doussin
,
Nellie Elguindi
,
Stefanie Feuerstein
,
Marco Gaetani
,
Chiara Giorio
,
Danitza Klopper
,
Marc Daniel Mallet
,
Pierre Nabat
,
Anne Monod
,
Fabien Solmon
,
Andreas Namwoonde
,
Chibo Chikwililwa
,
Roland Mushi
,
Ellsworth Judd Welton
, and
Brent Holben

Abstract

The Aerosol, Radiation and Clouds in southern Africa (AEROCLO-sA) project investigates the role of aerosols on the regional climate of southern Africa. This is a unique environment where natural and anthropogenic aerosols and a semipermanent and widespread stratocumulus (Sc) cloud deck are found. The project aims to understand the dynamical, chemical, and radiative processes involved in aerosol–cloud–radiation interactions over land and ocean and under various meteorological conditions. The AEROCLO-sA field campaign was conducted in August and September of 2017 over Namibia. An aircraft equipped with active and passive remote sensors and aerosol in situ probes performed a total of 30 research flight hours. In parallel, a ground-based mobile station with state-of-the-art in situ aerosol probes and remote sensing instrumentation was implemented over coastal Namibia, and complemented by ground-based and balloonborne observations of the dynamical, thermodynamical, and physical properties of the lower troposphere. The focus laid on mineral dust emitted from salty pans and ephemeral riverbeds in northern Namibia, the advection of biomass-burning aerosol plumes from Angola subsequently transported over the Atlantic Ocean, and aerosols in the marine boundary layer at the ocean–atmosphere interface. This article presents an overview of the AEROCLO-sA field campaign with results from the airborne and surface measurements. These observations provide new knowledge of the interactions of aerosols and radiation in cloudy and clear skies in connection with the atmospheric dynamics over southern Africa. They will foster new advanced climate simulations and enhance the capability of spaceborne sensors, ultimately allowing a better prediction of future climate and weather in southern Africa.

Full access
Luiz A. T. Machado
,
Maria A. F. Silva Dias
,
Carlos Morales
,
Gilberto Fisch
,
Daniel Vila
,
Rachel Albrecht
,
Steven J. Goodman
,
Alan J. P. Calheiros
,
Thiago Biscaro
,
Christian Kummerow
,
Julia Cohen
,
David Fitzjarrald
,
Ernani L. Nascimento
,
Meiry S. Sakamoto
,
Christopher Cunningham
,
Jean-Pierre Chaboureau
,
Walter A. Petersen
,
David K. Adams
,
Luca Baldini
,
Carlos F. Angelis
,
Luiz F. Sapucci
,
Paola Salio
,
Henrique M. J. Barbosa
,
Eduardo Landulfo
,
Rodrigo A. F. Souza
,
Richard J. Blakeslee
,
Jeffrey Bailey
,
Saulo Freitas
,
Wagner F. A. Lima
, and
Ali Tokay

CHUVA, meaning “rain” in Portuguese, is the acronym for the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (GPM). The CHUVA project has conducted five field campaigns; the sixth and last campaign will be held in Manaus in 2014. The primary scientific objective of CHUVA is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. The five CHUVA campaigns were designed to investigate specific tropical weather regimes. The first two experiments, in Alcantara and Fortaleza in northeastern Brazil, focused on warm clouds. The third campaign, which was conducted in Belém, was dedicated to tropical squall lines that often form along the sea-breeze front. The fourth campaign was in the Vale do Paraiba of southeastern Brazil, which is a region with intense lightning activity. In addition to contributing to the understanding of cloud process evolution from storms to thunderstorms, this fourth campaign also provided a high-fidelity total lightning proxy dataset for the NOAA Geostationary Operational Environmental Satellite (GOES)-R program. The fifth campaign was carried out in Santa Maria, in southern Brazil, a region of intense hailstorms associated with frequent mesoscale convective complexes. This campaign employed a multimodel high-resolution ensemble experiment. The data collected from contrasting precipitation regimes in tropical continental regions allow the various cloud processes in diverse environments to be compared. Some examples of these previous experiments are presented to illustrate the variability of convection across the tropics.

Full access