Search Results
You are looking at 11 - 20 of 23 items for :
- Author or Editor: Margaret LeMone x
- Monthly Weather Review x
- Refine by Access: Content accessible to me x
Abstract
Heights of nocturnal boundary layer (NBL) features are determined using vertical profiles from the Advanced Research Weather Research and Forecasting Model (ARW-WRF), and then compared to data for three moderately windy fair-weather nights during the April–May 1997 Kansas-based Cooperative Atmosphere–Surface Exchange Study (CASES-97) to evaluate the success of four PBL schemes in replicating observations. The schemes are Bougeault–LaCarrere (BouLac), Mellor–Yamada–Janjić (MYJ), quasi-normal scale elimination (QNSE), and Yonsei University (YSU) versions 3.2 and 3.4.1. This study’s chosen objectively determined model NBL height h estimate uses a turbulence kinetic energy (TKE) threshold equal to 5%
Abstract
Heights of nocturnal boundary layer (NBL) features are determined using vertical profiles from the Advanced Research Weather Research and Forecasting Model (ARW-WRF), and then compared to data for three moderately windy fair-weather nights during the April–May 1997 Kansas-based Cooperative Atmosphere–Surface Exchange Study (CASES-97) to evaluate the success of four PBL schemes in replicating observations. The schemes are Bougeault–LaCarrere (BouLac), Mellor–Yamada–Janjić (MYJ), quasi-normal scale elimination (QNSE), and Yonsei University (YSU) versions 3.2 and 3.4.1. This study’s chosen objectively determined model NBL height h estimate uses a turbulence kinetic energy (TKE) threshold equal to 5%
Abstract
High-resolution 24-h runs of the Advanced Research version of the Weather Research and Forecasting Model are used to test eight objective methods for estimating convective boundary layer (CBL) depth h, using four planetary boundary layer schemes: Yonsei University (YSU), Mellor–Yamada–Janjic (MYJ), Bougeault–LaCarrere (BouLac), and quasi-normal scale elimination (QNSE). The methods use thresholds of virtual potential temperature Θυ, turbulence kinetic energy (TKE), Θυ,z , or Richardson number. Those that identify h consistent with values found subjectively from modeled Θυ profiles are used for comparisons to fair-weather observations from the 1997 Cooperative Atmosphere–Surface Exchange Study (CASES-97).
The best method defines h as the lowest level at which Θυ,z = 2 K km−1, working for all four schemes, with little sensitivity to horizontal grid spacing. For BouLac, MYJ, and QNSE, TKE thresholds did poorly for runs with 1- and 3-km grid spacing, producing irregular h growth not consistent with Θυ-profile evolution. This resulted from the vertical velocity W associated with resolved CBL eddies: for W > 0, TKE profiles were deeper and Θυ profiles more unstable than for W < 0. For the 1-km runs, 25-point spatial averaging was needed for reliable TKE-based h estimates, but thresholds greater than free-atmosphere values were sensitive to horizontal grid spacing. Matching Θυ(h) to Θυ(0.05h) or Θυ at the first model level were often successful, but the absence of eddies for 9-km grids led to more unstable Θυ profiles and often deeper h.
Values of h for BouLac, MYJ, and QNSE, are mostly smaller than observed, with YSU values close to slightly high, consistent with earlier results.
Abstract
High-resolution 24-h runs of the Advanced Research version of the Weather Research and Forecasting Model are used to test eight objective methods for estimating convective boundary layer (CBL) depth h, using four planetary boundary layer schemes: Yonsei University (YSU), Mellor–Yamada–Janjic (MYJ), Bougeault–LaCarrere (BouLac), and quasi-normal scale elimination (QNSE). The methods use thresholds of virtual potential temperature Θυ, turbulence kinetic energy (TKE), Θυ,z , or Richardson number. Those that identify h consistent with values found subjectively from modeled Θυ profiles are used for comparisons to fair-weather observations from the 1997 Cooperative Atmosphere–Surface Exchange Study (CASES-97).
The best method defines h as the lowest level at which Θυ,z = 2 K km−1, working for all four schemes, with little sensitivity to horizontal grid spacing. For BouLac, MYJ, and QNSE, TKE thresholds did poorly for runs with 1- and 3-km grid spacing, producing irregular h growth not consistent with Θυ-profile evolution. This resulted from the vertical velocity W associated with resolved CBL eddies: for W > 0, TKE profiles were deeper and Θυ profiles more unstable than for W < 0. For the 1-km runs, 25-point spatial averaging was needed for reliable TKE-based h estimates, but thresholds greater than free-atmosphere values were sensitive to horizontal grid spacing. Matching Θυ(h) to Θυ(0.05h) or Θυ at the first model level were often successful, but the absence of eddies for 9-km grids led to more unstable Θυ profiles and often deeper h.
Values of h for BouLac, MYJ, and QNSE, are mostly smaller than observed, with YSU values close to slightly high, consistent with earlier results.
Abstract
This investigation examines the meso- and microscale aspects of the 9 March 1992 cold front that passed through Kansas during the daylight hours. The principal feature of this front is the relatively rapid frontogenesis that occurred. The total change in the cross-frontal temperature is about 6 K, with most of the change occurring between about 0820 and 1400 local time and over a relatively small subsection of the total frontal width. The surface data are able to resolve a sharp horizontal transition zone of 1–2 km. The principal physical processes that produce this frontogenesis are shown to be the cross-frontal differential sensible heating, associated with differential cloud cover, and the convergence of warm and cold air toward the front. The former process is responsible for an increase in the magnitude of the differential temperature change across the front; the latter process concentrates the existing temperature differential across an ever-decreasing transitional zone until a near discontinuity in the horizontal temperature distribution is essentially established during the period of a few hours. Two approaches are taken to demonstrate that these processes control the observed frontogenesis. First, surface data from an enhanced array, set up during the Storm-scale Operational and Research Meteorology Fronts Experiment System Test, are used to evaluate the terms that contribute to the time rate of change of the gradient of potential temperature, d|∇θ| / dt, following the motion of the front. Then, the processes of differential sensible heating and convergence are incorporated into a simple two-dimensional nonlinear model that serves to provide a forecast of the surface temperature and velocity fields from given initial conditions that are appropriate at the onset of the surface heating. Verification of the model predictions by observed data confirms that both processes contribute to the observed daytime frontogenesis on 9 March 1992. A critique of the model does. however, suggest that the accuracy of some quantitative evaluations could be improved.
Abstract
This investigation examines the meso- and microscale aspects of the 9 March 1992 cold front that passed through Kansas during the daylight hours. The principal feature of this front is the relatively rapid frontogenesis that occurred. The total change in the cross-frontal temperature is about 6 K, with most of the change occurring between about 0820 and 1400 local time and over a relatively small subsection of the total frontal width. The surface data are able to resolve a sharp horizontal transition zone of 1–2 km. The principal physical processes that produce this frontogenesis are shown to be the cross-frontal differential sensible heating, associated with differential cloud cover, and the convergence of warm and cold air toward the front. The former process is responsible for an increase in the magnitude of the differential temperature change across the front; the latter process concentrates the existing temperature differential across an ever-decreasing transitional zone until a near discontinuity in the horizontal temperature distribution is essentially established during the period of a few hours. Two approaches are taken to demonstrate that these processes control the observed frontogenesis. First, surface data from an enhanced array, set up during the Storm-scale Operational and Research Meteorology Fronts Experiment System Test, are used to evaluate the terms that contribute to the time rate of change of the gradient of potential temperature, d|∇θ| / dt, following the motion of the front. Then, the processes of differential sensible heating and convergence are incorporated into a simple two-dimensional nonlinear model that serves to provide a forecast of the surface temperature and velocity fields from given initial conditions that are appropriate at the onset of the surface heating. Verification of the model predictions by observed data confirms that both processes contribute to the observed daytime frontogenesis on 9 March 1992. A critique of the model does. however, suggest that the accuracy of some quantitative evaluations could be improved.
Abstract
Perturbation pressure fields are measured by aircraft around the cloud base updrafts of seven clouds ranging in size from weak cumulus congestus to intense cumulonimbus during CCOPE (1981). The fields are characterized by a high-low pressure couplet of similar size to the updraft, but a quarter-wavelength out of Phase, with the minimum pressure downshear of the updraft maximum. An estimate of the terms in the Poisson equation for pressure show that the pressure perturbation results chiefly from the interaction of the updraft with the vertical shear of the environmental horizontal wind. The behavior of the pressure oscillation is well predicted by inserting sinusoidal functions in the corresponding terms in the Poisson equation. The amplitude of the pressure oscillation is proportional to the wavelengths of the pressure and vertical-velocity fields, the amplitude of the vertical-velocity oscillation, and the vertical shear of the horizontal environmental wind through cloud base, measured in the direction of the maximum pressure gradient.
Abstract
Perturbation pressure fields are measured by aircraft around the cloud base updrafts of seven clouds ranging in size from weak cumulus congestus to intense cumulonimbus during CCOPE (1981). The fields are characterized by a high-low pressure couplet of similar size to the updraft, but a quarter-wavelength out of Phase, with the minimum pressure downshear of the updraft maximum. An estimate of the terms in the Poisson equation for pressure show that the pressure perturbation results chiefly from the interaction of the updraft with the vertical shear of the environmental horizontal wind. The behavior of the pressure oscillation is well predicted by inserting sinusoidal functions in the corresponding terms in the Poisson equation. The amplitude of the pressure oscillation is proportional to the wavelengths of the pressure and vertical-velocity fields, the amplitude of the vertical-velocity oscillation, and the vertical shear of the horizontal environmental wind through cloud base, measured in the direction of the maximum pressure gradient.
Abstract
A fair weather boundary layer (BL) with light winds and scattered cumulus to 1100 m is examined in the GATE C-scale triangle using data from tethered balloons, surface measurements from the booms of the ships, structure sondes and gust probe aircraft. The original goal was a comparison of the instrumentation in an expected uniform field of wind, temperature and humidity. It became rapidly obvious that nonuniformities existed not only at the turbulence scales (a few meters to 1 km) but also on scales 10 km and larger. Thus the goal evolved into 1) combining the observations to present a coherent picture of the day, 2) putting the results of various observational techniques in perspective and 3) examining the nonuniformity.
Different aspects of the day are revealed by the different observational techniques. The Dallas tethered balloon reveals a noticeable modification of the BL nearly coincident with a change in convective activity. In spite of nonuniformity, and the interception of convective events similar to that at the Dallas, the flux profiles from aircraft show that the BL behaves in a similar way to those reported previously near “horizontally homogeneous” conditions. Moisture and energy budgets performed for this day show the expected convergence of sensible and latent heat in the boundary layer but in a shallower layer than expected.
Abstract
A fair weather boundary layer (BL) with light winds and scattered cumulus to 1100 m is examined in the GATE C-scale triangle using data from tethered balloons, surface measurements from the booms of the ships, structure sondes and gust probe aircraft. The original goal was a comparison of the instrumentation in an expected uniform field of wind, temperature and humidity. It became rapidly obvious that nonuniformities existed not only at the turbulence scales (a few meters to 1 km) but also on scales 10 km and larger. Thus the goal evolved into 1) combining the observations to present a coherent picture of the day, 2) putting the results of various observational techniques in perspective and 3) examining the nonuniformity.
Different aspects of the day are revealed by the different observational techniques. The Dallas tethered balloon reveals a noticeable modification of the BL nearly coincident with a change in convective activity. In spite of nonuniformity, and the interception of convective events similar to that at the Dallas, the flux profiles from aircraft show that the BL behaves in a similar way to those reported previously near “horizontally homogeneous” conditions. Moisture and energy budgets performed for this day show the expected convergence of sensible and latent heat in the boundary layer but in a shallower layer than expected.
Abstract
Numerical simulations are conducted using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to investigate the impact of land–vegetation processes on the prediction of mesoscale convection observed on 24–25 May 2002 during the International H2O Project (IHOP_2002). The control COAMPS configuration uses the Weather Research and Forecasting (WRF) model version of the Noah land surface model (LSM) initialized using a high-resolution land surface data assimilation system (HRLDAS). Physically consistent surface fields are ensured by an 18-month spinup time for HRLDAS, and physically consistent mesoscale fields are ensured by a 2-day data assimilation spinup for COAMPS. Sensitivity simulations are performed to assess the impact of land–vegetative processes by 1) replacing the Noah LSM with a simple slab soil model (SLAB), 2) adding a photosynthesis, canopy resistance/transpiration scheme [the gas exchange/photosynthesis-based evapotranspiration model (GEM)] to the Noah LSM, and 3) replacing the HRLDAS soil moisture with the National Centers for Environmental Prediction (NCEP) 40-km Eta Data Assimilation (EDAS) operational soil fields.
CONTROL, EDAS, and GEM develop convection along the dryline and frontal boundaries 2–3 h after observed, with synoptic-scale forcing determining the location and timing. SLAB convection along the boundaries is further delayed, indicating that detailed surface parameterization is necessary for a realistic model forecast. EDAS soils are generally drier and warmer than HRLDAS, resulting in more extensive development of convection along the dryline than for CONTROL. The inclusion of photosynthesis-based evapotranspiration (GEM) improves predictive skill for both air temperature and moisture. Biases in soil moisture and temperature (as well as air temperature and moisture during the prefrontal period) are larger for EDAS than HRLDAS, indicating land–vegetative processes in EDAS are forced by anomalously warmer and drier conditions than observed. Of the four simulations, the errors in SLAB predictions of these quantities are generally the largest.
By adding a sophisticated transpiration model, the atmospheric model is able to better respond to the more detailed representation of soil moisture and temperature. The sensitivity of the synoptically forced convection to soil and vegetative processes including transpiration indicates that detailed representation of land surface processes should be included in weather forecasting models, particularly for severe storm forecasting where local-scale information is important.
Abstract
Numerical simulations are conducted using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to investigate the impact of land–vegetation processes on the prediction of mesoscale convection observed on 24–25 May 2002 during the International H2O Project (IHOP_2002). The control COAMPS configuration uses the Weather Research and Forecasting (WRF) model version of the Noah land surface model (LSM) initialized using a high-resolution land surface data assimilation system (HRLDAS). Physically consistent surface fields are ensured by an 18-month spinup time for HRLDAS, and physically consistent mesoscale fields are ensured by a 2-day data assimilation spinup for COAMPS. Sensitivity simulations are performed to assess the impact of land–vegetative processes by 1) replacing the Noah LSM with a simple slab soil model (SLAB), 2) adding a photosynthesis, canopy resistance/transpiration scheme [the gas exchange/photosynthesis-based evapotranspiration model (GEM)] to the Noah LSM, and 3) replacing the HRLDAS soil moisture with the National Centers for Environmental Prediction (NCEP) 40-km Eta Data Assimilation (EDAS) operational soil fields.
CONTROL, EDAS, and GEM develop convection along the dryline and frontal boundaries 2–3 h after observed, with synoptic-scale forcing determining the location and timing. SLAB convection along the boundaries is further delayed, indicating that detailed surface parameterization is necessary for a realistic model forecast. EDAS soils are generally drier and warmer than HRLDAS, resulting in more extensive development of convection along the dryline than for CONTROL. The inclusion of photosynthesis-based evapotranspiration (GEM) improves predictive skill for both air temperature and moisture. Biases in soil moisture and temperature (as well as air temperature and moisture during the prefrontal period) are larger for EDAS than HRLDAS, indicating land–vegetative processes in EDAS are forced by anomalously warmer and drier conditions than observed. Of the four simulations, the errors in SLAB predictions of these quantities are generally the largest.
By adding a sophisticated transpiration model, the atmospheric model is able to better respond to the more detailed representation of soil moisture and temperature. The sensitivity of the synoptically forced convection to soil and vegetative processes including transpiration indicates that detailed representation of land surface processes should be included in weather forecasting models, particularly for severe storm forecasting where local-scale information is important.
Abstract
Comparisons of 10-m above ground level (AGL) wind speeds from numerical weather prediction (NWP) models to point observations consistently show that model daytime wind speeds are slow compared to observations, even after improving model physics and going to smaller grid spacing. Previous authors have attributed the discrepancy to differences between the areas represented by model and observations, and the small surface roughness upstream of wind vanes compared with the corresponding model grid value. Using daytime fair-weather data from the May–June 2002 International H2O Experiment (IHOP_2002), the effect of wind-vane exposure is explored by comparing observed 10-m winds from nine surface-flux towers in well-exposed locations to modeled 10-m winds found by applying Monin–Obukhov (MO) similarity for unstable conditions to flight-track-averaged data collected by the University of Wyoming King Air over flat to rolling terrain with occasional trees and buildings. In the calculations, King Air winds and fluxes are supplemented with thermodynamic means and fluxes from the surface-flux towers. After exercising considerable care in characterizing and reducing biases in aircraft winds and fluxes, the authors found that MO-based surface winds averaged 0.5–0.7 ± 0.2 m s−1 less than those measured—about the same as the smaller reported discrepancies between NWP models and observed winds.
Abstract
Comparisons of 10-m above ground level (AGL) wind speeds from numerical weather prediction (NWP) models to point observations consistently show that model daytime wind speeds are slow compared to observations, even after improving model physics and going to smaller grid spacing. Previous authors have attributed the discrepancy to differences between the areas represented by model and observations, and the small surface roughness upstream of wind vanes compared with the corresponding model grid value. Using daytime fair-weather data from the May–June 2002 International H2O Experiment (IHOP_2002), the effect of wind-vane exposure is explored by comparing observed 10-m winds from nine surface-flux towers in well-exposed locations to modeled 10-m winds found by applying Monin–Obukhov (MO) similarity for unstable conditions to flight-track-averaged data collected by the University of Wyoming King Air over flat to rolling terrain with occasional trees and buildings. In the calculations, King Air winds and fluxes are supplemented with thermodynamic means and fluxes from the surface-flux towers. After exercising considerable care in characterizing and reducing biases in aircraft winds and fluxes, the authors found that MO-based surface winds averaged 0.5–0.7 ± 0.2 m s−1 less than those measured—about the same as the smaller reported discrepancies between NWP models and observed winds.
Abstract
The effects of the horizontal variability of surface properties on the turbulent fluxes of virtual potential temperature, moisture, and carbon dioxide are investigated by combining aircraft observations with large-eddy simulations (LESs). Daytime fair-weather aircraft measurements from the 2002 International H2O Project’s 45-km Eastern Track over mixed grassland and winter wheat in southeast Kansas reveal that the western part of the atmospheric boundary layer was warmer and drier than the eastern part, with higher values of carbon dioxide to the east. The temperature and specific humidity patterns are consistent with the pattern of surface fluxes produced by the High-Resolution Land Data Assimilation System. However, the observed turbulent fluxes of virtual potential temperature, moisture, and carbon dioxide, computed as a function of longitude along the flight track, do not show a clear east–west trend. Rather, the fluxes at 70 m above ground level related better to the surface variability quantified in terms of the normalized differential vegetation index (NDVI), with strong correlation between carbon dioxide fluxes and NDVI.
A first attempt is made to estimate the ratios of the flux at the entrainment zone to the surface flux (entrainment ratios) as a function of longitude. The entrainment ratios averaged from these observations (β θ υ ≈ 0.10, βq ≈ −2.4, and β CO2 ≈ −0.58) are similar to the values found from the homogeneous LES experiment with initial and boundary conditions similar to observations.
To understand how surface flux heterogeneity influences turbulent fluxes higher up, a heterogeneous LES experiment is performed in a domain with higher sensible and lower latent heat fluxes in the western half compared to the eastern half. In contrast to the aircraft measurements, the LES turbulent fluxes show a difference in magnitude between the eastern and western halves at 70 and 700 m above ground level. Possible reasons for these differences between results from LES and aircraft measurements are discussed.
Abstract
The effects of the horizontal variability of surface properties on the turbulent fluxes of virtual potential temperature, moisture, and carbon dioxide are investigated by combining aircraft observations with large-eddy simulations (LESs). Daytime fair-weather aircraft measurements from the 2002 International H2O Project’s 45-km Eastern Track over mixed grassland and winter wheat in southeast Kansas reveal that the western part of the atmospheric boundary layer was warmer and drier than the eastern part, with higher values of carbon dioxide to the east. The temperature and specific humidity patterns are consistent with the pattern of surface fluxes produced by the High-Resolution Land Data Assimilation System. However, the observed turbulent fluxes of virtual potential temperature, moisture, and carbon dioxide, computed as a function of longitude along the flight track, do not show a clear east–west trend. Rather, the fluxes at 70 m above ground level related better to the surface variability quantified in terms of the normalized differential vegetation index (NDVI), with strong correlation between carbon dioxide fluxes and NDVI.
A first attempt is made to estimate the ratios of the flux at the entrainment zone to the surface flux (entrainment ratios) as a function of longitude. The entrainment ratios averaged from these observations (β θ υ ≈ 0.10, βq ≈ −2.4, and β CO2 ≈ −0.58) are similar to the values found from the homogeneous LES experiment with initial and boundary conditions similar to observations.
To understand how surface flux heterogeneity influences turbulent fluxes higher up, a heterogeneous LES experiment is performed in a domain with higher sensible and lower latent heat fluxes in the western half compared to the eastern half. In contrast to the aircraft measurements, the LES turbulent fluxes show a difference in magnitude between the eastern and western halves at 70 and 700 m above ground level. Possible reasons for these differences between results from LES and aircraft measurements are discussed.
Abstract
Sources of differences between observations and simulations for a case study using the Noah land surface model–based High-Resolution Land Data Assimilation System (HRLDAS) are examined for sensible and latent heat fluxes H and LE, respectively; surface temperature Ts ; and vertical temperature difference T 0 − Ts , where T 0 is at 2 m. The observational data were collected on 29 May 2002, using the University of Wyoming King Air and four surface towers placed along a sparsely vegetated 60-km north–south flight track in the Oklahoma Panhandle. This day had nearly clear skies and a strong north–south soil-moisture gradient, with wet soils and widespread puddles at the south end of the track and drier soils to the north. Relative amplitudes of H and LE horizontal variation were estimated by taking the slope of the least squares best-fit straight line ΔLE/ΔH on plots of time-averaged LE as a function of time-averaged H for values along the track. It is argued that observed H and LE values departing significantly from their slope line are not associated with surface processes and, hence, need not be replicated by HRLDAS. Reasonable agreement between HRLDAS results and observed data was found only after adjusting the coefficient C in the Zilitinkevich equation relating the roughness lengths for momentum and heat in HRLDAS from its default value of 0.1 to a new value of 0.5. Using C = 0.1 and adjusting soil moisture to match the observed near-surface values increased horizontal variability in the right sense, raising LE and lowering H over the moist south end. However, both the magnitude of H and the amplitude of its horizontal variability relative to LE remained too large; adjustment of the green vegetation fraction had only a minor effect. With C = 0.5, model-input green vegetation fraction, and our best-estimate soil moisture, H, LE, ΔLE/ΔH, and T 0 − Ts , were all close to observed values. The remaining inconsistency between model and observations—too high a value of H and too low a value of LE over the wet southern end of the track—could be due to HRLDAS ignoring the effect of open water. Neglecting the effect of moist soils on the albedo could also have contributed.
Abstract
Sources of differences between observations and simulations for a case study using the Noah land surface model–based High-Resolution Land Data Assimilation System (HRLDAS) are examined for sensible and latent heat fluxes H and LE, respectively; surface temperature Ts ; and vertical temperature difference T 0 − Ts , where T 0 is at 2 m. The observational data were collected on 29 May 2002, using the University of Wyoming King Air and four surface towers placed along a sparsely vegetated 60-km north–south flight track in the Oklahoma Panhandle. This day had nearly clear skies and a strong north–south soil-moisture gradient, with wet soils and widespread puddles at the south end of the track and drier soils to the north. Relative amplitudes of H and LE horizontal variation were estimated by taking the slope of the least squares best-fit straight line ΔLE/ΔH on plots of time-averaged LE as a function of time-averaged H for values along the track. It is argued that observed H and LE values departing significantly from their slope line are not associated with surface processes and, hence, need not be replicated by HRLDAS. Reasonable agreement between HRLDAS results and observed data was found only after adjusting the coefficient C in the Zilitinkevich equation relating the roughness lengths for momentum and heat in HRLDAS from its default value of 0.1 to a new value of 0.5. Using C = 0.1 and adjusting soil moisture to match the observed near-surface values increased horizontal variability in the right sense, raising LE and lowering H over the moist south end. However, both the magnitude of H and the amplitude of its horizontal variability relative to LE remained too large; adjustment of the green vegetation fraction had only a minor effect. With C = 0.5, model-input green vegetation fraction, and our best-estimate soil moisture, H, LE, ΔLE/ΔH, and T 0 − Ts , were all close to observed values. The remaining inconsistency between model and observations—too high a value of H and too low a value of LE over the wet southern end of the track—could be due to HRLDAS ignoring the effect of open water. Neglecting the effect of moist soils on the albedo could also have contributed.
Abstract
Observations taken over the period 8–10 March 1992 during the Storm-scale Operational and Research Meteorology Fronts Experiment Systems Test in the central United States are used to document the detailed low-level structure and evolution of a shallow, dry arctic front. The front was characterized by cloudy skies to its north side and clear skies to its south side. It was essentially two-dimensional in the zone of intense observations.
There was a significant diurnal cycle in the magnitude of the potential temperature gradient across both the subsynoptic and mesoscale frontal zones, but imposed upon an underlying, more gradual, increase over the three days. On the warm (cloudless) side., the temperature increased and decreased in response to the diurnal heating cycle, while on the cold (cloudy) side the shape of the temperature decrease from its warm-side value (first dropping rapidly and then slowly in an exponential-like manner) remained fairly steady. The authors attribute the strong diurnal variation in potential temperature gradient mostly to the effects of differential diabatic heating across the front due to differential cloud cover.
The front is described in terms of three scales: 1) a broad, subsynoptic frontal zone (∼250–300 km wide) of modest temperature and wind gradients; 2) a narrower mesoscale zone (∼15–20 km wide) with much larger gradients; and 3) a microscale zone of near-zero-order discontinuity (≤1–2 km wide). There was some narrowing (≲50 km) of the subsynoptic frontal zone, but the authors found no evidence for any significant contraction of this zone down to much smaller mesoscale sizes. In response to the differential diabatic heating, the strongest evolution occurred in the micro-mesoscale zone, where dual-Doppler radar and aircraft measurements revealed the development of a density-current-like structure in and behind the leading edge of cold air. Here the steepest gradients developed shortly after sunrise and then increased by an order of magnitude during the day, with leading-edge vorticity, divergence, and temperature gradients reaching maximum values of 10−2 s−1 and 8 K km−1. A narrow updraft, marked by cumulus clouds, grew in intensity above the leading edge through the day to a maximum of 5–8 m s−1. Stratus clouds lay in the cold air, their leading edge receding by noon to 10–20 km behind the cumulus line.
Abstract
Observations taken over the period 8–10 March 1992 during the Storm-scale Operational and Research Meteorology Fronts Experiment Systems Test in the central United States are used to document the detailed low-level structure and evolution of a shallow, dry arctic front. The front was characterized by cloudy skies to its north side and clear skies to its south side. It was essentially two-dimensional in the zone of intense observations.
There was a significant diurnal cycle in the magnitude of the potential temperature gradient across both the subsynoptic and mesoscale frontal zones, but imposed upon an underlying, more gradual, increase over the three days. On the warm (cloudless) side., the temperature increased and decreased in response to the diurnal heating cycle, while on the cold (cloudy) side the shape of the temperature decrease from its warm-side value (first dropping rapidly and then slowly in an exponential-like manner) remained fairly steady. The authors attribute the strong diurnal variation in potential temperature gradient mostly to the effects of differential diabatic heating across the front due to differential cloud cover.
The front is described in terms of three scales: 1) a broad, subsynoptic frontal zone (∼250–300 km wide) of modest temperature and wind gradients; 2) a narrower mesoscale zone (∼15–20 km wide) with much larger gradients; and 3) a microscale zone of near-zero-order discontinuity (≤1–2 km wide). There was some narrowing (≲50 km) of the subsynoptic frontal zone, but the authors found no evidence for any significant contraction of this zone down to much smaller mesoscale sizes. In response to the differential diabatic heating, the strongest evolution occurred in the micro-mesoscale zone, where dual-Doppler radar and aircraft measurements revealed the development of a density-current-like structure in and behind the leading edge of cold air. Here the steepest gradients developed shortly after sunrise and then increased by an order of magnitude during the day, with leading-edge vorticity, divergence, and temperature gradients reaching maximum values of 10−2 s−1 and 8 K km−1. A narrow updraft, marked by cumulus clouds, grew in intensity above the leading edge through the day to a maximum of 5–8 m s−1. Stratus clouds lay in the cold air, their leading edge receding by noon to 10–20 km behind the cumulus line.