Search Results

You are looking at 11 - 20 of 38 items for

  • Author or Editor: Qin Zhang x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Shu-Wen Zhang, Chong-Jian Qiu, and Qin Xu

Abstract

A simple soil heat transfer model is used together with an adaptive Kalman filter to estimate the daily averaged soil volumetric water contents from diurnal variations of the soil temperatures measured at different depths. In this method, the soil water contents are estimated as control variables that regulate the variations of soil temperatures at different depths and make the model nonbiased, while the model system noise covariance matrix is estimated by the covariance-matching technique. The method is tested with soil temperature data collected during 1–31 July 2000 from the Soil Water and Temperature System (SWATS) within the Oklahoma Atmospheric Radiation Measurement (ARM) central facilities at Lamont. The estimated soil water contents are verified against the observed values, and the rms differences are found to be small. Sensitivity tests are performed, showing that the method is reliable and stable.

Full access
Shun Liu, Chongjian Qiu, Qin Xu, and Pengfei Zhang

Abstract

A temporal interpolation is required for three-dimensional Doppler wind analysis when the precise measurement time is counted for each radar beam position. The time interpolation is traditionally done by a linear scheme either in the measurement space or in the analysis space. Because a volume scan often takes 5–10 min, the linear time interpolation is not accurate enough to capture the rapidly changing winds associated with a fast-moving and fast-growing storm. Performing the linear interpolation in a frame moving with the storm can reduce the error, but the analyzed wind field is traditionally assumed to be stationary in the moving frame. The stationary assumption simplifies the computation but ignores the time variation of the true wind field in the moving frame. By incorporating a linear time interpolation into the moving frame wind analysis, an improved scheme is developed. The merits of the new scheme are demonstrated by idealized examples and numerical experiments with simulated radar observations. The new scheme is also applied to real radar data for a supercell storm.

Full access
Arun Kumar, Qin Zhang, Peitao Peng, and Bhaskar Jha

Abstract

From ensembles of 80 AGCM simulations for every December–January–February (DJF) seasonal mean in the 1980–2000 period, interannual variability in atmospheric response to interannual variations in observed sea surface temperature (SST) is analyzed. A unique facet of this study is the use of large ensemble size that allows identification of the atmospheric response to SSTs for each DJF in the analysis period. The motivation of this study was to explore what atmospheric response patterns beyond the canonical response to El Niño–Southern Oscillation (ENSO) SST anomalies exist, and to which SST forcing such patterns may be related. A practical motivation for this study was to seek sources of atmospheric predictability that may lead to improvements in seasonal predictability efforts.

This analysis was based on the EOF technique applied to the ensemble mean 200-mb height response. The dominant mode of the atmospheric response was indeed the canonical atmospheric response to ENSO; however, this mode only explained 53% of interannual variability of the ensemble means (often referred to as the external variability). The second mode, explaining 19% of external variability, was related to a general increase (decrease) in the 200-mb heights related to a Tropicwide warming (cooling) in SSTs. The third dominant mode, explaining 12% of external variability, was similar to the mode identified as the “nonlinear” response to ENSO in earlier studies.

The realism of different atmospheric response patterns was also assessed from a comparison of anomaly correlations computed between different renditions of AGCM-simulated atmospheric responses and the observed 200-mb height anomalies. For example, the anomaly correlation between the atmospheric response reconstructed from the first mode alone and the observations was compared with the anomaly correlation when the atmospheric response was reconstructed including modes 2 and 3. If the higher-order atmospheric response patterns obtained from the AGCM simulations had observational counterparts, their inclusion in the reconstructed atmospheric response should lead to higher anomaly correlations. Indeed, at some geographical regions, an increase in anomaly correlation with the inclusion of higher modes was found, and it is concluded that the higher-order atmospheric response patterns found in this study may be realistic and may represent additional sources of atmospheric seasonal predictability.

Full access
Emily Becker, Huug van den Dool, and Qin Zhang

Abstract

Forecast skill and potential predictability of 2-m temperature, precipitation rate, and sea surface temperature are assessed using 29 yr of hindcast data from models included in phase 1 of the North American Multimodel Ensemble (NMME) project. Forecast skill is examined using the anomaly correlation (AC); skill of the bias-corrected ensemble means (EMs) of the individual models and of the NMME 7-model EM are verified against the observed value. Forecast skill is also assessed using the root-mean-square error. The models’ representation of the size of forecast anomalies is also studied. Predictability was considered from two angles: homogeneous, where one model is verified against a single member from its own ensemble, and heterogeneous, where a model’s EM is compared to a single member from another model. This study provides insight both into the physical predictability of the three fields and into the NMME and its contributing models.

Most of the models in the NMME have fairly realistic spread, as represented by the interannual variability. The NMME 7-model forecast skill, verified against observations, is equal to or higher than the individual models’ forecast ACs. Two-meter temperature (T2m) skill matches the highest single-model skill, while precipitation rate and sea surface temperature NMME EM skill is higher than for any single model. Homogeneous predictability is higher than reported skill in all fields, suggesting there may be room for some improvement in model prediction, although there are many regional and seasonal variations. The estimate of potential predictability is not overly sensitive to the choice of model. In general, models with higher homogeneous predictability show higher forecast skill.

Full access
Arun Kumar, Bhaskar Jha, Qin Zhang, and Lahouari Bounoua

Abstract

Predictability limits for seasonal atmospheric climate variability depend on the fraction of variability that is due to factors external to the atmosphere (e.g., boundary conditions) and the fraction that is internal. From the analysis of observed data alone, however, separation of the total seasonal atmospheric variance into its external and internal components remains a difficult and controversial issue. In this paper a simple procedure for estimating atmospheric internal variability is outlined. This procedure is based on the expected value of the mean square error between the observed and the general circulation model simulated (or predicted) seasonal mean anomaly. The end result is a spatial map for the estimate of the observed seasonal atmospheric internal (or unpredictable) variability. As improved general circulation models become available, mean square error estimated from the new generation of general circulation models can be easily included in the procedure proposed herein, bringing the estimate for the internal variability closer to its true estimate.

Full access
Xu Qin, Jiang-she Zhang, and Xiao-dong Yan

Abstract

In this paper, the authors propose two improved mixture Weibull distribution models by adding one or two location parameters to the existing two-component mixture two-parameter Weibull distribution [MWbl(2, 2)] model. One improved model is the mixture two-parameter Weibull and three-parameter Weibull distribution [MWbl(2, 3)] model. The other improved model is the two-component mixture three-parameter Weibull distribution [MWbl(3, 3)] model. In contrast to existing literature, which has focused on the MWbl(2, 2) and the typical Weibull distribution models, the authors apply the MWbl(2, 3) model and MWbl(3, 3) model to fit the distribution of wind speed data with nearly zero percentages of null wind speed. The parameters of the two improved models are estimated by the maximum likelihood method in which the maximization problem is regarded as a nonlinear programming problem with only inequality constraints and is solved numerically by the interior-point method. The experimental results show that the mixture Weibull models proposed in this paper are more flexible than the existing models for the analysis of wind speed data in practice.

Full access
Ping Liu, Qin Zhang, Chidong Zhang, Yuejian Zhu, Marat Khairoutdinov, Hye-Mi Kim, Courtney Schumacher, and Minghua Zhang

Abstract

This study investigates why OLR plays a small role in the Real-time Multivariate (Madden–Julian oscillation) MJO (RMM) index and how to improve it. The RMM index consists of the first two leading principal components (PCs) of a covariance matrix, which is constructed by combined daily anomalies of OLR and zonal winds at 850 (U850) and 200 hPa (U200) in the tropics after being normalized with their globally averaged standard deviations of 15.3 W m−2, 1.8 m s−1, and 4.9 m s−1, respectively. This covariance matrix is reasoned mathematically close to a correlation matrix. Both matrices substantially suppress the overall contribution of OLR and make the index more dynamical and nearly transparent to the convective initiation of the MJO. A covariance matrix that does not use normalized anomalies leads to the other extreme where OLR plays a dominant role while U850 and U200 are minor. Numerous tests indicate that a simple scaling of the anomalies (i.e., 2 W m−2, 1 m s−1, and 1 m s−1) can better balance the roles of OLR and winds. The revised PCs substantially enhance OLR over the eastern Indian and western Pacific Oceans and change it less notably in other locations, while they reduce U850 and U200 only slightly. Comparisons with the original RMM in spatial structure, power spectra, and standard deviation demonstrate improvements of the revised RMM index.

Full access
Panfeng Zhang, Guoyu Ren, Yan Xu, Xiaolan L. Wang, Yun Qin, Xiubao Sun, and Yuyu Ren

Abstract

This paper presents an analysis of changes in global land extreme temperature indices (1951–2015) based on the new global land surface daily air temperature dataset recently developed by the China Meteorological Administration (CMA). The linear trends of the gridpoint time series and global land mean time series were calculated by using a Mann–Kendall method that accounts for the lag-1 autocorrelation in the time series of annual extreme temperature indices. The results, which are generally consistent with previous studies, showed that the global land average annual and seasonal mean extreme temperature indices series all experienced significant long-term changes associated with warming, with cold threshold indices (frost days, icing days, cold nights, and cold days) decreasing, warm threshold indices (summer days, tropical nights, and warm days) increasing, and all absolute indices (TXx, TXn, TNx, and TNn) also increasing, over the last 65 years. The extreme temperature indices series based on daily minimum temperatures generally had a stronger and more significant trend than those based on daily maximum temperatures. The strongest warming occurred after the mid-1970s, and a few extreme temperature indices showed no significant trend over the period from 1951 to the mid-1970s. Most parts of the global land experienced significant warming trends over the period 1951–2015 as a whole, and the largest trends appeared in mid- to high latitudes of the Eurasian continent.

Full access
Qin Zhang, Arun Kumar, Yan Xue, Wanqiu Wang, and Fei-Fei Jin

Abstract

Simulations from the National Centers for Environmental Prediction (NCEP) coupled model are analyzed to document and understand the behavior of the evolution of the El Niño–Southern Oscillation (ENSO) cycle. The analysis is of importance for two reasons: 1) the coupled model used in this study is also used operationally to provide model-based forecast guidance on a seasonal time scale, and therefore, an understanding of the ENSO mechanism in this particular coupled system could also lead to an understanding of possible biases in SST predictions; and 2) multiple theories for ENSO evolution have been proposed, and coupled model simulations are a useful test bed for understanding the relative importance of different ENSO mechanisms.

The analyses of coupled model simulations show that during the ENSO evolution the net surface heat flux acts as a damping mechanism for the mixed-layer temperature anomalies, and positive contribution from the advection terms to the ENSO evolution is dominated by the linear advective processes. The subsurface temperature–SST feedback, referred to as thermocline feedback in some theoretical literature, is found to be the primary positive feedback, whereas the advective feedback by anomalous zonal currents and the thermocline feedback are the primary sources responsible for the ENSO phase transition in the model simulation. The basic mechanisms for the model-simulated ENSO cycle are thus, to a large extent, consistent with those highlighted in the recharge oscillator. The atmospheric anticyclone (cyclone) over the western equatorial northern Pacific accompanied by a warm (cold) phase of the ENSO, as well as the oceanic Rossby waves outside of 15°S–15°N and the equatorial higher-order baroclinic modes, all appear to play minor roles in the model ENSO cycles.

Full access
Qingyun Zhao, Fuqing Zhang, Teddy Holt, Craig H. Bishop, and Qin Xu

Abstract

An ensemble Kalman filter (EnKF) has been adopted and implemented at the Naval Research Laboratory (NRL) for mesoscale and storm-scale data assimilation to study the impact of ensemble assimilation of high-resolution observations, including those from Doppler radars, on storm prediction. The system has been improved during its implementation at NRL to further enhance its capability of assimilating various types of meteorological data. A parallel algorithm was also developed to increase the system’s computational efficiency on multiprocessor computers. The EnKF has been integrated into the NRL mesoscale data assimilation system and extensively tested to ensure that the system works appropriately with new observational data stream and forecast systems. An innovative procedure was developed to evaluate the impact of assimilated observations on ensemble analyses with no need to exclude any observations for independent validation (as required by the conventional evaluation based on data-denying experiments). The procedure was employed in this study to examine the impacts of ensemble size and localization on data assimilation and the results reveal a very interesting relationship between the ensemble size and the localization length scale. All the tests conducted in this study demonstrate the capabilities of the EnKF as a research tool for mesoscale and storm-scale data assimilation with potential operational applications.

Full access