Search Results

You are looking at 11 - 12 of 12 items for :

  • Author or Editor: Roberto Buizza x
  • Monthly Weather Review x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Roberto Buizza, P. L. Houtekamer, Gerald Pellerin, Zoltan Toth, Yuejian Zhu, and Mozheng Wei

Abstract

The present paper summarizes the methodologies used at the European Centre for Medium-Range Weather Forecasts (ECMWF), the Meteorological Service of Canada (MSC), and the National Centers for Environmental Prediction (NCEP) to simulate the effect of initial and model uncertainties in ensemble forecasting. The characteristics of the three systems are compared for a 3-month period between May and July 2002. The main conclusions of the study are the following:

  • the performance of ensemble prediction systems strongly depends on the quality of the data assimilation system used to create the unperturbed (best) initial condition and the numerical model used to generate the forecasts;
  • a successful ensemble prediction system should simulate the effect of both initial and model-related uncertainties on forecast errors; and
  • for all three global systems, the spread of ensemble forecasts is insufficient to systematically capture reality, suggesting that none of them is able to simulate all sources of forecast uncertainty.
The relative strengths and weaknesses of the three systems identified in this study can offer guidelines for the future development of ensemble forecasting techniques.

Full access
Chun-Chieh Wu, Jan-Huey Chen, Sharanya J. Majumdar, Melinda S. Peng, Carolyn A. Reynolds, Sim D. Aberson, Roberto Buizza, Munehiko Yamaguchi, Shin-Gan Chen, Tetsuo Nakazawa, and Kun-Hsuan Chou

Abstract

This study compares six different guidance products for targeted observations over the northwest Pacific Ocean for 84 cases of 2-day forecasts in 2006 and highlights the unique dynamical features affecting the tropical cyclone (TC) tracks in this basin. The six products include three types of guidance based on total-energy singular vectors (TESVs) from different global models, the ensemble transform Kalman filter (ETKF) based on a multimodel ensemble, the deep-layer mean (DLM) wind variance, and the adjoint-derived sensitivity steering vector (ADSSV). The similarities among the six products are evaluated using two objective statistical techniques to show the diversity of the sensitivity regions in large, synoptic-scale domains and in smaller domains local to the TC. It is shown that the three TESVs are relatively similar to one another in both the large and the small domains while the comparisons of the DLM wind variance with other methods show rather low similarities. The ETKF and the ADSSV usually show high similarity because their optimal sensitivity usually lies close to the TC. The ADSSV, relative to the ETKF, reveals more similar sensitivity patterns to those associated with TESVs. Three special cases are also selected to highlight the similarities and differences among the six guidance products and to interpret the dynamical systems affecting the TC motion in the northwestern Pacific. Among the three storms studied, Typhoon Chanchu was associated with the subtropical high, Typhoon Shanshan was associated with the midlatitude trough, and Typhoon Durian was associated with the subtropical jet. The adjoint methods are found to be more capable of capturing the signal of the dynamic system that may affect the TC movement or evolution than are the ensemble methods.

Full access